」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 人工智慧 > DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

發佈於2025-04-18
瀏覽:316

The evolution of AI language models has set new standards, especially in the coding and programming landscape. Leading the charge are DeepSeek-V3, GPT-4o, and Llama 3.3 70B, each offering unique advantages. In this blog, we will do an AI language model comparison, focusing on the architectures, parameters, coding capabilities, and practical use cases of GPT-4o and its two alternatives. Through a detailed analysis of DeepSeek-V3 vs GPT-4o vs Llama 3.3 70B, I will uncover which model is best suited for programming tasks and how these advancements are shaping the future of AI in 2025.

Table of Contents

  • Model Architectures and Design
    • DeepSeek-V3
    • GPT-4o
    • Llama 3.3 70B
  • DeepSeek-V3 vs GPT-4o vs Llama 3.3 70B: Model Evaluation
    • 1. Model Overview
    • 2. Pricing Comparison
    • 3. Benchmark Comparison
    • Comparison Insights
  • DeepSeek-V3 vs GPT-4o vs Llama 3.3 70B: Coding Capabilities
    • Task 1: Finding the Factorial of a Large Number
    • Task 2: Checking if a String is a Palindrome
  • Conclusion
  • Frequently Asked Questions

Model Architectures and Design

DeepSeek-V3 is an open-source AI model that excels in large language model benchmarks with its efficient Mixture-of-Experts (MoE) architecture. Llama 3.3 70B is impressive with its scalability and adaptability, making it a strong contender in AI model parameter comparison. Meanwhile, GPT-4o stands out with its extensive resources, giving its competitors a run for their money.

Now, let’s begin our comparison by understanding the design and architectures of the three models.

DeepSeek-V3

DeepSeek-V3 is an open-source Mixture-of-Experts (MoE) model with 671 billion parameters, activating 37 billion parameters per token. It leverages cutting-edge load balancing and multi-token prediction methods, trained on 14.8 trillion tokens. Achieving top-tier performance across multiple benchmarks, the model maintains training efficiency with a cost of only 2.788 million H800 GPU hours.

DeepSeek-V3 incorporates reasoning abilities from DeepSeek-R1 Lite and offers a 128K context window. Moreover, it can process a variety of input types, including text, structured data, and complex multimodal inputs, making it versatile for diverse use cases.

Also Read: Building AI Application with DeepSeek-V3

GPT-4o

GPT-4o is an advanced language model developed by OpenAI, featuring state-of-the-art architectural improvements. It is trained over a vast dataset of input tokens, making it highly capable across various tasks with impressive accuracy.

The model supports multimodal inputs and has enhanced reasoning abilities, providing versatility for numerous applications. With a context window of 128K tokens, it can generate up to 16,384 tokens per request and processes around 77.4 tokens per second. Released in August 2024, its knowledge extends up to October 2023, making it one of the most powerful and adaptable models on the market.

Llama 3.3 70B

The Meta Llama 3.3 70 B multilingual large language model (LLM) is an open-source, pre-trained, instruction-tuned generative model with 70 billion parameters. It is designed to be optimized for efficiency and scalability. It employs cutting-edge techniques to handle a broad range of tasks, trained on over 15 trillion tokens.

Llama 3.3 70B is an auto-regressive language model that uses an optimized transformer architecture. The model achieves remarkable performance on several benchmarks, keeping training costs minimal with optimized resource allocation.

Llama 3.3 70B supports a wide context window and incorporates advanced reasoning capabilities for nuanced and precise task handling. It is designed to process text-based inputs but can also handle structured data, offering flexibility in various applications.

DeepSeek-V3 vs GPT-4o vs Llama 3.3 70B: Model Evaluation

1. Model Overview

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

2. Pricing Comparison

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

3. Benchmark Comparison

Benchmark Description DeepSeek-V3 GPT-4o Llama 3.3 70B
MMLU Massive Multitask Language Understanding- Test knowledge across 57 subjects including maths, history, law and more 88.5% 88.7% 88.5%
MMLU-Pro A more robust MMLU benchmark with more complex reasoning focused questions and reduced prompt sensitivity 75.9% 74.68% 75.9%
MMMU Massive Multitask Multimodal Understanding: Text understanding across text, audio,images and videos Not available 69.1% Not available
HellaSwag A challenging sentence completion benchmark 88.9% Not available Not available
HumanEval Evaluates code generation and problem solving capabilities 82.6% 90.2% 88.4%
MATH Tests Mathematical problem solving abilities across various difficulty levels 61.6% 75.9% 77%
GPQA Test PhD-level knowledge in physics, chemistry and biology that require domain expertise 59.1% 53.6% 50.5%
IFEval Test model’s ability to accurately follow explicit formatting instructions, generate appropriate outputs and maintain consistent instructions 86.1% Not available 92.1%

You can find the results of their individual benchmark tests here:

  • GPT-4o: https://github.com/openai/simple-evals?tab=readme-ov-file#benchmark-result
  • Llama 3.3 70B: https://build.nvidia.com/meta/llama-3_3-70b-instruct/modelcard
  • DeepSeek-V3: https://github.com/deepseek-ai/DeepSeek-V3

Comparison Insights

Speaking of pricing, GPT-4o is roughly 30x more expensive compared to DeepSeek-V3 for input and output tokens. Meanwhile, Llama 3.3 70B Instruct is roughly 1.5x more expensive compared to DeepSeek-V3 for input and output tokens.

DeepSeek-V3 excels in benchmarks that require structured task completion, such as MMLU (Massive Multitask Language Understanding), and HumanEval (Code Generation). However, it faces challenges in benchmarks like MATH (Mathematical Problem-Solving), where its performance is not as competitive. It also leads in GPQA (Generalized Passage Question Answering), outperforming the other models in this domain.

GPT-4o performs particularly well in HumanEval and MMLU, where it stands out with its ability to generate high-quality responses across various topics. While it shines in reasoning-based tasks, it struggles in specialized areas such as MATH and GPQA, where other models perform better.

Llama 3.3 70B shows its strengths in benchmarks like MATH and IFEval (Instruction Following Evaluation). It demonstrates superior problem-solving abilities and follows complex instructions more effectively than the other models. Its performance in other benchmarks like HumanEval and GPQA is less impressive than DeepSeek-V3 and GPT-4o.

DeepSeek-V3 vs GPT-4o vs Llama 3.3 70B: Coding Capabilities

Now we will compare the code writing capabilities of DeepSeek-V3, GPT-4o, and Llama 3.3 70B. For that, we are going to give the same prompt to all three models and evaluate their responses on the below metrics:

  1. Efficiency
  2. Readability
  3. Comment and Documentation
  4. Error Handling

Task 1: Finding the Factorial of a Large Number

Prompt: “Hi, you are an excellent code instructor so help me with this question.
Q. Write Python code for finding the Factorial of a Large Number.”

Response by GPT-4o

To compute the factorial of a large number using an array (to manually handle multiplication and carry operations), here’s a Python implementation:

def multiply(arr, x):
   """
   Multiplies an array representation of a number with an integer x.


   : param arr: List of integers representing the digits of the number.
   : param x: Integer to multiply with.
   :return: Updated array with the result.
   """
   carry = 0  # Initialize carry
   for i in range(len(arr)):
       prod = arr[i] * x   carry
       arr[i] = prod % 10  # Store last digit of the product in the array
       carry = prod // 10  # Update the carry
   # Process carry, add digits to the array
   while carry > 0:
       arr.append(carry % 10)
       carry //= 10
   return arr


def factorial_large_number_array(n):
   """
   Calculate the factorial of a large number using array representation.


   : param n: Integer for which the factorial is to be computed.
   :return: Factorial of n as a string.
   """
   if n 



Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Response by Llama 3.3 70B

Here’s a Python code snippet that calculates the factorial of a large number using an array to store the digits.

def multiply(x, res, res_size):
   """Multiplies x with the number represented by res[]"""
   carry = 0
   for i in range(res_size):
       prod = res[i] * x   carry
       res[i] = prod % 10
       carry = prod // 10
   while carry:
       res.append(carry % 10)
       carry = carry // 10


def factorial(n):
   """ Calculates the factorial of a number n"""
   res = [1]
   res_size = 1
   for i in range(2, n   1):
       multiply(i, res, res_size)
       res_size = len(res)
   return res
def print_factorial(n):
   """ Prints the factorial of a number n"""
   res = factorial(n)
   print("Factorial of", n, "is:")
   for digit in reversed(res):
       print(digit, end="")
# Example usage:
n = 55
print_factorial(n)

Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Response by DeepSeek-V3

To calculate the factorial of a large number using an array in Python, we can store the result in an array (or list) to handle very large numbers that exceed the limit of standard data types. Here’s how you can implement it:

def factorial(n):
   # Initialize the result as a list with 1
   result = [1]


   # Multiply the result list with numbers from 2 to n
   for x in range(2, n   1):
       carry = 0
       # Multiply each digit in the result list with x
       for i in range(len(result)):
           product = result[i] * x   carry
           result[i] = product % 10  # Store the last digit
           carry = product // 10     # Carry over the remaining digits
       # Add the remaining carry to the result list
       while carry > 0:
           result.append(carry % 10)
           carry = carry // 10


   # Reverse the result list to get the correct order
   result.reverse()
   return result


# Input: Number to find factorial of
n = int(input("Enter a number: "))
# Compute factorial
factorial_result = factorial(n)
# Convert the list of digits to a string for display
factorial_str = ''.join(map(str, factorial_result))
# Output the result
print(f"Factorial of {n} is: {factorial_str}")

Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Comparison Results

GPT-4o’s response is the most complete, balancing efficiency, readability, and robust error handling. It includes detailed comments and clear variable names, and handles invalid input gracefully, making it well-suited for practical use or collaborative development.

Llama 3.3 70B’s response is functional, but it lacks proper error handling and detailed documentation. Its structure is less intuitive, and the use of redundant variables impacts the efficiency. This makes it the weakest of the three.

DeepSeek-V3’s response is efficient and cleanly structured but lacks robust error handling and sufficient documentation. It is a strong contender but falls short in clarity for people to follow or adapt easily.

Recommendations:

  • For practical use: GPT-4o is the best choice due to its robust error handling, clear documentation, and strong readability.
  • For educational purposes: GPT-4o would again be the preferred option due to the detailed docstrings and comments in its response, which can help learners understand things logically.

Task 2: Checking if a String is a Palindrome

Prompt: ‘‘Hi, you are an excellent code instructor so help me with this question.
Q. Given a string s, return true if the s can be palindrome after deleting at most one character from it.’’

Response by GPT-4o

To solve this problem, we can use a two-pointer approach to check if the string can be a palindrome after removing at most one character. Here’s the Python implementation

def valid_palindrome(s):
   """
   Check if the string can become a palindrome by removing at most one character.


   : param s: The input string.
   :return: True if the string can become a palindrome, otherwise False.
   """
   def is_palindrome_range(left, right):
       # Helper function to check if a substring is a palindrome
       while left 



Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Response by Llama 3.3 70B

Here’s a Python solution that checks if a string can be a palindrome after deleting at most one character.

def valid_palindrome(s: str) -> bool:
   """
   Returns True if the string can be a palindrome after deleting at most one character.
  
   :param s: The input string.
   :return: True if the string can be a palindrome, False otherwise.
   """
   def is_palindrome(i, j):
       """
       Checks if the substring from index i to j is a palindrome.
       :param i: The start index.
       :param j: The end index.
       :return: True if the substring is a palindrome, False otherwise."""
       while i 



Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Response by DeepSeek-V3

To solve this problem, we need to check if a string can become a palindrome by deleting at most one character. A palindrome reads the same forwards and backward. Here’s how we can approach this:

def validPalindrome(s: str) -> bool:
   def is_palindrome(s, left, right):       # Helper function to check if a substring is a palindrome
       while left 



Output of the Generated Code

DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘

Comparison Insights

GPT-4o’s response is the most complete and well-documented. It handles the core functionality with clarity, making it easy for future developers to modify or extend the code. Its combination of efficiency and clear documentation makes it ideal for production environments.

Llama 3.3 70B’s response is a functional solution but lacks the clear variable naming and in-depth documentation found in GPT-4o. The lack of comments within the main logic makes it harder to follow, and there is room for improvement in terms of readability. However, it is efficient enough for small tasks where quick implementation is the priority.

DeepSeek-V3’s response strikes a good balance between efficiency and simplicity but falls short in documentation. It’s concise and quick but lacks enough detail for others to follow the code easily. Its approach can be beneficial in scenarios where time and resources are limited, but it would need more thorough explanations and error handling to make the code production-ready.

Recommendations:

  • For practical use: GPT-4o response is the best due to its thorough documentation, clear structure, and readability.
  • For educational purposes: GPT-4o is the most suitable, providing comprehensive insights into each step of the process.

Conclusion

GPT-4o outperforms both Llama 3.3 70B and DeepSeek-V3 in terms of efficiency, clarity, error management, and comprehensive documentation. This makes it the top choice for both practical applications and educational purposes. While Llama 3.3 70B and DeepSeek-V3 are functional, they fall short due to the lack of robust error handling and clear documentation. Adding proper error management, improving variable naming, and including detailed comments would elevate their usability to match GPT-4o’s standard.

Unlock the power of DeepSeek! Enroll in our “Getting Started with DeepSeek” course today and learn how to leverage this cutting-edge AI model for your projects. Don’t miss out—join now and elevate your AI skills!

Also Read:

  • DeepSeek R1 vs OpenAI o1: Which One is Better?
  • DeepSeek R1 vs OpenAI o1 vs Sonnet 3.5
  • Chinese Giants Faceoff: DeepSeek-V3 vs Qwen2.5
  • DeepSeek V3 vs Claude Sonnet 3.5
  • DeepSeek V3 vs GPT-4o

Frequently Asked Questions

Q1. Which model delivers the highest code quality for real-world applications?

A. GPT-4o excels in real-world coding due to its efficient error handling, clear documentation, and well-organized code structure, making it the best choice for practical use.

Q2. How do these models compare in terms of code readability and ease of understanding?

A. GPT-4o stands out for its readability, offering clear variable names and thorough comments. In comparison, Llama 3.3 70B and DeepSeek-V3 are functional but lack the same level of clarity and documentation, which can make them harder to follow.

Q3. Which model is most suitable for educational purposes?

A. GPT-4o is the ideal choice for education, providing in-depth documentation and detailed explanations that help learners grasp the underlying logic of the code.

Q4. What steps can be taken to enhance DeepSeek-V3 and Llama 3.3 70B to match GPT-4o’s quality?

A. To elevate their performance, both models should focus on implementing robust error handling, using more descriptive variable names, and adding detailed comments and documentation to improve their readability and overall usability.

最新教學 更多>
  • AI Agents是什麼? - 解析與應用指南
    AI Agents是什麼? - 解析與應用指南
    Artificial Intelligence (AI) is rapidly evolving, and 2025 is shaping up to be the year of AI agents. But what are AI agents...
    人工智慧 發佈於2025-05-01
  • Python中使用OpenCV和Roboflow進行性別檢測 - 分析Vidhya
    Python中使用OpenCV和Roboflow進行性別檢測 - 分析Vidhya
    介绍 从面部图像中检测是计算机视觉的众多迷人应用之一。在此项目中,我们将OPENCV结合起来,以面对位置和用于性别分类的Roboflow API,制作一种识别面部的设备,检查它们并预测其性别。我们将利用Python(尤其是在Google Colab中)输入和运行此代码。该直接提供了易于遵循的代码的演...
    人工智慧 發佈於2025-04-29
  • 機器先行思考:戰略AI崛起
    機器先行思考:戰略AI崛起
    STRATEGIC AI Prologue 11. May 1997, New York City. It was a beautiful spring day in New York City. The skies were clear, and temperatures were climbin...
    人工智慧 發佈於2025-04-29
  • LLM必備的8個免費與付費API推薦
    LLM必備的8個免費與付費API推薦
    利用LLMS的力量:大型語言模型的API指南 在當今的動態業務格局中,API(應用程序編程接口)正在革新我們如何整合和利用AI功能。 它們充當必不可少的橋樑,無縫將大型語言模型(LLM)連接到不同的軟件生態系統。 這種有效的數據交換和功能共享允許應用程序充分利用開放和封閉源LLM的功率。本文探討...
    人工智慧 發佈於2025-04-21
  • 使用指南:Falcon 3-7B Instruct模型
    使用指南:Falcon 3-7B Instruct模型
    中的革命性飛躍 關鍵功能和改進 可擴展的模型大小:有各種尺寸(1b,3b,7b和10b parameters),為各種應用程序提供了靈活性。 高級文本生成:文本生成中的異常功能,包括細微的上下文理解和特定於任務的應用程序。 本文是數據科學博客馬拉鬆的一部分。 目錄 架構設計 性能基準 [2 [2 使...
    人工智慧 發佈於2025-04-20
  • DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘
    DeepSeek-V3對比GPT-4o與Llama 3.3 70B:最強AI模型揭秘
    The evolution of AI language models has set new standards, especially in the coding and programming landscape. Leading the c...
    人工智慧 發佈於2025-04-18
  • 盤點Top 5 AI智能預算工具
    盤點Top 5 AI智能預算工具
    通過AI解鎖財務自由:印度的最高預算應用程序 您是否厭倦了不斷想知道您的錢去了哪裡? 賬單似乎會吞噬您的收入嗎? 人工智能(AI)提供了強大的解決方案。 AI預算工具提供實時財務見解,個性化建議和動態計劃,使資金管理更簡單,更準確。 有些甚至使用生成AI提供基於聊天的財務分析!本文探討了印度可...
    人工智慧 發佈於2025-04-17
  • Excel SUMPRODUCT函數詳解 - 數據分析學院
    Excel SUMPRODUCT函數詳解 - 數據分析學院
    Excel的SumProduct函數:數據分析PowerHouse 解鎖Excel的Sumproduct函數的功能,以用於簡化數據分析。這種多功能功能毫不費力地結合了求和功能,擴展到跨相應範圍或數組的加法,減法和分裂。 無論您是分析趨勢還是解決複雜的計算,Sumproduct都會將數字轉換為可...
    人工智慧 發佈於2025-04-16
  • 深度研究全面開放,ChatGPT Plus用戶福利
    深度研究全面開放,ChatGPT Plus用戶福利
    Openai的深入研究:改變遊戲的AI研究 Openai已為所有Chatgpt加上訂戶釋放了深入的研究,並承諾在研究效率方面具有重大提高。 在測試了雙子座,Grok 3和困惑等競爭對手的類似功能之後,我可以自信地將Openai的深入研究宣佈為出色的選擇。此博客深入研究了它的功能。 目錄 什麼是...
    人工智慧 發佈於2025-04-16
  • 亞馬遜Nova Today真實體驗與評測 - Analytics Vidhya
    亞馬遜Nova Today真實體驗與評測 - Analytics Vidhya
    亚马逊最近的回复:Invent 2024活动展示了Nova,这是其最先进的基础模型套件,旨在彻底改变AI和内容创建。本文深入研究了Nova的架构,通过动手实例探索其功能,并检查基准结果。 我们将介绍功能,评论,基准和对AI应用程序的影响。 [2 此探索将涵盖Amazon Nova的功能,详细的评论...
    人工智慧 發佈於2025-04-16
  • ChatGPT定時任務功能的5種使用方法
    ChatGPT定時任務功能的5種使用方法
    Chatgpt的新計劃任務:使用AI 自動化您的一天 Chatgpt最近引入了一個改變遊戲規則的功能:計劃的任務。 這允許用戶自動化重複提示,即使在離線時,也可以在預定時間接收通知或響應。想像一下每天策劃的新聞通訊,自動化工作時間表或及時的習慣提醒 - 所有這些都是由Chatgpt自動處理的。...
    人工智慧 發佈於2025-04-16
  • 三款AI聊機器人對同一提示的反應,哪個最佳?
    三款AI聊機器人對同一提示的反應,哪個最佳?
    這是我發現的。 在精心策劃且詳細的提示中扮演著質量良好的提示,在輸出的質量中扮演任何cathbot生產的質量。與所有工具一樣,輸出僅與使用該工具的人的技能一樣好。 AI聊天機器人沒有什麼不同。 有了這種理解,我指示每個模型創建一個針對個人理財的基本指南。這種方法使我能夠評估多個相互聯繫的主題(特...
    人工智慧 發佈於2025-04-15
  • ChatGPT足矣,無需專用AI聊機
    ChatGPT足矣,無需專用AI聊機
    在一個新的AI聊天機器人每天啟動的世界中,決定哪一個是正確的“一個”。但是,以我的經驗,chatgpt處理了我所丟下的幾乎所有內容,而無需在平台之間切換,只需稍有及時的工程。 在許多實踐應用程序中可能會讓您感到驚訝。它的範圍令人印象深刻,使用戶可以生成代碼段,草稿求職信,甚至翻譯語言。這種多功能性...
    人工智慧 發佈於2025-04-14
  • 印度AI時刻:與中美在生成AI領域競賽
    印度AI時刻:與中美在生成AI領域競賽
    印度的AI抱負:2025 Update 與中國和美國在生成AI上進行了大量投資,印度正在加快自己的Genai計劃。 不可否認的是,迫切需要迎合印度各種語言和文化景觀的土著大語模型(LLM)和AI工具。 本文探討了印度新興的Genai生態系統,重點介紹了2025年工會預算,公司參與,技能開發計劃...
    人工智慧 發佈於2025-04-13
  • 使用Airflow和Docker自動化CSV到PostgreSQL的導入
    使用Airflow和Docker自動化CSV到PostgreSQL的導入
    本教程演示了使用Apache氣流,Docker和PostgreSQL構建強大的數據管道,以使數據傳輸從CSV文件自動化到數據庫。 我們將介紹有效工作流程管理的核心氣流概念,例如DAG,任務和操作員。 該項目展示了創建可靠的數據管道,該數據管線讀取CSV數據並將其寫入PostgreSQL數據庫。我們...
    人工智慧 發佈於2025-04-12

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3