”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 使用 Java + Quarkus + Langchain 构建可靠的 AI 代理 - 部分 AI 即服务

使用 Java + Quarkus + Langchain 构建可靠的 AI 代理 - 部分 AI 即服务

发布于2024-11-08
浏览:957

Autores

@herbertbeckman - LinkedIn
@rndtavares - LinkedIn

Partes do artigo

  1. Agente de IA confiável em prod com Java Quarkus Langchain4j - Parte 1 - AI as Service (este artigo)

  2. Agente de IA confiável em prod com Java Quarkus Langchain4j - Parte 2 - Memória (em breve)

  3. Agente de IA confiável em prod com Java Quarkus Langchain4j - Parte 3 - RAG (em breve)

  4. Agente de IA confiável em prod com Java Quarkus Langchain4j - Parte 4 - Guardrails (em breve)

Introdução

Sempre que temos um "boom" de uma tecnologia emergente, as empresas ficam ansiosas por aplicá-las e colher os resultados tão esperados do ponto de vista do negócio. É a corrida pela inovação e a disputa pelas vantagens do pioneirismo. No meio dessa corrida, muitas das vezes, as empresas, que antes estavam ansiosas, acabam desistindo por uma série de fatores, sendo um dos principais a confiabilidade de um sistema de forma geral. A inteligencia artificial (IA) está neste momento em uma das suas maiores provas de resistência e nosso trabalho como desenvolvedores de softwares é demostrar as empresas que sim, é possível realizar uma série de tarefas e processos com o uso consciente e correto da IA. Neste artigo iremos demonstrar, em 3 partes, quais são as funcionalidades e processos que devemos ter em um agente de IA confiável em produção para uma empresa ter os tão esperados resultados, bem como implementarmos juntos alguns conceitos utilizados no mercado. Iremos também detalhar os pontos de atenção desta solução e pedimos para que você, dev, realize o máximo de testes e nos dê o maior número de feedbacks possíveis para que, juntos, possamos melhorar ainda mais esse entendimento.

Funcionalidades Implementadas

  • Chat
  • Tools
  • Chat Memory
  • Retrieval-Augmented Generation (RAG)
  • Guardrails

Conceitos e definições

Assistente vs Copiloto vs Agente

Uma das primeiras dúvidas que se pode ter é no que um agente se diferencia dos demais casos de uso da IA. O Agente tem funcionalidades mais ligadas pra automação, enquantos os outros tem suas atividades voltadas à finalidade de assistentcia e otimização do tempo. Abaixo detalho melhor cada um dos casos de uso.

Assistentes

Os assistentes conseguem nos auxiliar e economizar um bom tempo verificando informação e sendo uma boa fonte de troca de conhecimento. Eles falam SOBRE os assuntos mais variados e podem nos ser úteis quando precisamos de uma linha de raciocínio claro para analisar as premisas de uma argumentação. Claro, eles tem bem mais poderes que isso, mas quero que você foque no que um assistente faz: ele conversa com você e somente isso. Ele pode falar sobre, sumarizar, detalhar, etc. Como exemplos temos: ChatGPT, Claude AI e Gemini.

Copilotos

Já os copilotos são um pouco mais poderosos que os assistentes. Eles conseguem realmente fazer algo, uma ação mais concreta como alterar um texto e ou sugerir modificações em tempo real, bem como dar dicas durante uma modificação e/ou evento acontecendo dentro de um contexto. Porém, como dito antes, ele depende do contexto pra fazer isso e nem sempre ele tem todas as informações necessárias para realizar um boa sugestão, ele também depende de sua autorização expressa, criando uma dependência direta com o usuário. Exemplos bons são: Github Copilot, Codium e Microsoft Copilot.

Agentes

Os agentes tem como objetivo principal realizar tarefas com objetivos claros. Tem o seu foco na automatização, ou seja, eles realmente fazem concreto e de forma autônoma. Tudo isso só se faz possível através das ferramentas que disponibilizamos a eles. O Agente não é o LLM em si, mas sim a sua aplicação que coordena esse LLM. Entenda o LLM como o cérebro do sistema, que toma as decisões, e a sua aplicação como os membros do corpo desse cérebro. Do que adianta eu pensar em pegar um copo de água se não consigo alcançá-lo com a minha mão? O seu agente proporciona ao LLM o poder de fazer algo de forma segura, auditável e, principalmente, confiável.

Partindo pra ação

Nesta primeira parte do artigo iremos implementar o AIService no projeto, que nada mais é do que a camada de interface com o nosso provedor de IA. Nesse projeto utilizamos o LLM da OpenAI, mas vc pode adicionar o seu provedor favorito e ajustar as dependências com base nele.

Agora que temos os conceitos bem definidos e já sabemos o que iremos fazer aqui, vamos pra codificação!

Criando o projeto

Crie um projeto quarkus, escolhendo o seu gerenciador de dependências e as extensões em Quarkus - Start coding.

Dependencias do projeto

Iremos utilizar o maven como gerenciador de dependências do projeto. A seguir as dependências iniciais que adicionamos.

Mavem


  io.quarkus
  quarkus-websockets-next



  io.quarkiverse.langchain4j
  quarkus-langchain4j-core
  0.20.3



  io.quarkiverse.langchain4j
  quarkus-langchain4j-openai
  0.20.3

Configuração do projeto

Adicione no arquivo src/main/resources/application.properties as seguintes propriedades:

quarkus.tls.trust-all=true
quarkus.langchain4j.timeout=60s
quarkus.langchain4j.openai.api-key=YOUR_OPENAI_API_KEY_HERE

Substitua YOUR_OPENAPI_KEY_HERE pela chave (apiKey) que você cadastrou na Plataforma da OpenAI.

DICA: crie uma variável de ambiente na sua IDE e depois modifique a property quarkus.langchain4j.openai.api-key para:

quarkus.langchain4j.openai.api-key=${OPEN_API_KEY:NAO_ENCONTREI_A_VAR}

Criando o nosso AIService

Primeiramente precisamos criar o nosso AIService que será a classe responsável por dar uma "personalidade" ao nosso agente. Para isso, no diretório src/main/java/, criaremos a classe de nome Agent com o seguinte código:

package ;

import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import io.quarkiverse.langchain4j.RegisterAiService;
import jakarta.enterprise.context.ApplicationScoped;

@ApplicationScoped
@RegisterAiService
public interface Agent {

    @SystemMessage("""
            Você é um agente especializado em futebol brasileiro, seu nome é FutAgentBR
            Você sabe responder sobre os principais títulos dos principais times brasileiros e da seleção brasileira
            Sua resposta precisa ser educada, você pode deve responder em Português brasileiro e de forma relevante a pergunta feita

            Quando você não souber a resposta, responda que você não sabe responder nesse momento mas saberá em futuras versões.
            """)
    String chat(@UserMessage String message);
}

Como podem perceper pelo nosso SystemPrompt (@SystemMessage), criamos um agente especializado em futebol.

Criando o nosso chat

Agora que criamos o nosso agente, precisamos criar a classe que cuidará do nosso chat com ele. Para isso, no diretório src/main/java/, criaremos a classe de nome AgentWSEndpoint com o seguinte código:

package ;

import io.quarkus.websockets.next.OnTextMessage;
import io.quarkus.websockets.next.WebSocket;

@WebSocket(path = "/ws")
public class BotWSEndpoint {

    private final Agent agent;

    BotWSEndpoint(Agent agent) {
        this.agent = agent;
    }

    @OnTextMessage
    String reply(String message) {
        return agent.chat(message);
    }

}

Agora você já consegue conversar com o seu agente, que no momento ainda é um assistente, através da dev ui do quarkus. Segue alguns prints pra você se orientar:

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Adicionando as nossas ferramentas (Function Calling)

Agora vamos para o detalhe que faz toda a diferença entre um agente e um assistente. Vamos dar a possibilidade do nosso agente realizar tarefas e/ou processos, adicionando as ferramentas (function calling). Antes de codificarmos isso, temos um breve gráfico demonstrando como a chamada de uma ferramenta funciona de forma macro.

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service
Source: superface.ai

Agora que sabemos como uma chamada de ferramenta funciona, precisamos criar a classe com nossas ferramentas, você também pode criar várias classes diferentes para cada ferramenta. Neste exemplo iremos criar uma "ToolBox", ou seja, uma caixa de ferramentas, agrupando as ferramentas que o nosso agente pode utilizar. Segue o código:

package ;

import dev.langchain4j.agent.tool.Tool;
import jakarta.enterprise.context.ApplicationScoped;

import java.time.LocalDate;
import java.time.LocalTime;

@ApplicationScoped
public class AgentTools {

    @Tool
    LocalDate currentDate() {
        System.out.println("Called currentDate()");
        return LocalDate.now();
    }

    @Tool
    LocalTime currentTime() {
        System.out.println("Called currentTime()");
        return LocalTime.now();
    }

    @Tool("Calcula a soma de dois números")
    int add(int a, int b) {
        System.out.println("Called add with a="   a   ", b="   b);
        return a   b;
    }

    @Tool("Calcula a raiz quadrada de um número")
    double sqrt(int x) {
        System.out.println("Called sqrt with x="   x);
        return Math.sqrt(x);
    }
}

Logo em seguida, adicionamos no nosso agente o anotação informando pra ele quais ferramentas ele tem disponível para utilizar, através da anotação @ToolBox(AgentTools.class). Ficando da seguinte maneira:

package ;

import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import io.quarkiverse.langchain4j.RegisterAiService;
import io.quarkiverse.langchain4j.ToolBox;
import jakarta.enterprise.context.ApplicationScoped;

@ApplicationScoped
@RegisterAiService
public interface Agent {

    @ToolBox(AgentTools.class)
    @SystemMessage("""
            Você é um agente especializado em futebol brasileiro, seu nome é FutAgentBR
            Você sabe responder sobre os principais títulos dos principais times brasileiros e da seleção brasileira
            Sua resposta precisa ser educada, você pode deve responder em Português brasileiro e de forma relevante a pergunta feita

            Quando você não souber a resposta, responda que você não sabe responder nesse momento mas saberá em futuras versões.
            """)
    String chat(@UserMessage String message);
}

Agora você pode perguntar ao seu agente que horas são, qual é a data de hoje, pedir pra ele somar dois números e calcular a raiz quadrada. Essas são as ferramentas que utilizamos aqui para ilustrar, mas você pode substituir isso por uma chamada HTTP, por uma função de hashing, por uma query SQL, etc. As possibilidades aqui são muitas.

Testando via Quarkus DEV UI

Segue o print de um dos testes realizados após adicionar as ferramentas:

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Agente de IA confiável em prod com Java   Quarkus   Langchain- Parte  AI as Service

Como pode ver, pra cada chamada de ferramenta teremos um log, evidenciando que o LLM realmente chamou o código que autorizamos ele a executar.

Próximos passos

Isso encerra o início da criação no nosso Agente. Em breve adicionaremos memória ao nosso Agente na parte 2, o RAG (Retrieval-Augmented Generation) na parte 3 e os Guardrails na parte 4 deste artigo. Espero que tenham gostado e até breve.

Mas você pode já acompanhar e ver TODO o código do artigo neste repositório do GitHub.

版本声明 本文转载于:https://dev.to/herbertbeckman/agente-de-ia-confiavel-em-prod-com-java-quarkus-langchain4j-parte-1-ai-as-service-4i14?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 为什么不使用CSS`content'属性显示图像?
    为什么不使用CSS`content'属性显示图像?
    在Firefox extemers属性为某些图像很大,&& && && &&华倍华倍[华氏华倍华氏度]很少见,却是某些浏览属性很少,尤其是特定于Firefox的某些浏览器未能在使用内容属性引用时未能显示图像的情况。这可以在提供的CSS类中看到:。googlepic { 内容:url(&#...
    编程 发布于2025-07-23
  • 在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在程序退出之前,我需要在C ++中明确删除堆的堆分配吗?
    在C中的显式删除 在C中的动态内存分配时,开发人员通常会想知道是否有必要在heap-procal extrable exit exit上进行手动调用“ delete”操作员,但开发人员通常会想知道是否需要手动调用“ delete”操作员。本文深入研究了这个主题。 在C主函数中,使用了动态分配变量(H...
    编程 发布于2025-07-23
  • Spark DataFrame添加常量列的妙招
    Spark DataFrame添加常量列的妙招
    在Spark Dataframe ,将常数列添加到Spark DataFrame,该列具有适用于所有行的任意值的Spark DataFrame,可以通过多种方式实现。使用文字值(SPARK 1.3)在尝试提供直接值时,用于此问题时,旨在为此目的的使用column方法可能会导致错误。 df.with...
    编程 发布于2025-07-23
  • 如何使用“ JSON”软件包解析JSON阵列?
    如何使用“ JSON”软件包解析JSON阵列?
    parsing JSON与JSON软件包 QUALDALS:考虑以下go代码:字符串 } func main(){ datajson:=`[“ 1”,“ 2”,“ 3”]`` arr:= jsontype {} 摘要:= = json.unmarshal([] byte(...
    编程 发布于2025-07-23
  • 在UTF8 MySQL表中正确将Latin1字符转换为UTF8的方法
    在UTF8 MySQL表中正确将Latin1字符转换为UTF8的方法
    在UTF8表中将latin1字符转换为utf8 ,您遇到了一个问题,其中含义的字符(例如,“jáuòiñe”)在utf8 table tabled tablesset中被extect(例如,“致电。为了解决此问题,您正在尝试使用“ mb_convert_encoding”和“ iconv”转换受...
    编程 发布于2025-07-23
  • FastAPI自定义404页面创建指南
    FastAPI自定义404页面创建指南
    response = await call_next(request) if response.status_code == 404: return RedirectResponse("https://fastapi.tiangolo.com") else: ...
    编程 发布于2025-07-23
  • Java中Lambda表达式为何需要“final”或“有效final”变量?
    Java中Lambda表达式为何需要“final”或“有效final”变量?
    Lambda Expressions Require "Final" or "Effectively Final" VariablesThe error message "Variable used in lambda expression shou...
    编程 发布于2025-07-23
  • \“(1)vs.(;;):编译器优化是否消除了性能差异?\”
    \“(1)vs.(;;):编译器优化是否消除了性能差异?\”
    答案: 在大多数现代编译器中,while(1)和(1)和(;;)之间没有性能差异。编译器: perl: 1 输入 - > 2 2 NextState(Main 2 -E:1)V-> 3 9 Leaveloop VK/2-> A 3 toterloop(next-> 8 last-> 9 ...
    编程 发布于2025-07-23
  • 如何使用Regex在PHP中有效地提取括号内的文本
    如何使用Regex在PHP中有效地提取括号内的文本
    php:在括号内提取文本在处理括号内的文本时,找到最有效的解决方案是必不可少的。一种方法是利用PHP的字符串操作函数,如下所示: 作为替代 $ text ='忽略除此之外的一切(text)'; preg_match('#((。 &&& [Regex使用模式来搜索特...
    编程 发布于2025-07-23
  • 如何同步迭代并从PHP中的两个等级阵列打印值?
    如何同步迭代并从PHP中的两个等级阵列打印值?
    同步的迭代和打印值来自相同大小的两个数组使用两个数组相等大小的selectbox时,一个包含country代码的数组,另一个包含乡村代码,另一个包含其相应名称的数组,可能会因不当提供了exply for for for the uncore for the forsion for for ytry...
    编程 发布于2025-07-23
  • PHP SimpleXML解析带命名空间冒号的XML方法
    PHP SimpleXML解析带命名空间冒号的XML方法
    在php 很少,请使用该限制很大,很少有很高。例如:这种技术可确保可以通过遍历XML树和使用儿童()方法()方法的XML树和切换名称空间来访问名称空间内的元素。
    编程 发布于2025-07-23
  • 如何使用Python有效地以相反顺序读取大型文件?
    如何使用Python有效地以相反顺序读取大型文件?
    在python 中,如果您使用一个大文件,并且需要从最后一行读取其内容,则在第一行到第一行,Python的内置功能可能不合适。这是解决此任务的有效解决方案:反向行读取器生成器 == ord('\ n'): 缓冲区=缓冲区[:-1] ...
    编程 发布于2025-07-23
  • 为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    为什么使用固定定位时,为什么具有100%网格板柱的网格超越身体?
    网格超过身体,用100%grid-template-columns 为什么在grid-template-colms中具有100%的显示器,当位置设置为设置的位置时,grid-template-colly修复了?问题: 考虑以下CSS和html: class =“ snippet-code”> g...
    编程 发布于2025-07-23
  • 在Pandas中如何将年份和季度列合并为一个周期列?
    在Pandas中如何将年份和季度列合并为一个周期列?
    pandas data frame thing commans date lay neal and pree pree'和pree pree pree”,季度 2000 q2 这个目标是通过组合“年度”和“季度”列来创建一个新列,以获取以下结果: [python中的concate...
    编程 发布于2025-07-23
  • 如何检查对象是否具有Python中的特定属性?
    如何检查对象是否具有Python中的特定属性?
    方法来确定对象属性存在寻求一种方法来验证对象中特定属性的存在。考虑以下示例,其中尝试访问不确定属性会引起错误: >>> a = someClass() >>> A.property Trackback(最近的最新电话): 文件“ ”,第1行, AttributeError: SomeClass...
    编程 发布于2025-07-23

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3