」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 解決 Go 中的十億行挑戰(從 到 s)

解決 Go 中的十億行挑戰(從 到 s)

發佈於2024-08-15
瀏覽:962

Resolvendo o desafio de um bilhão de linhas em Go (de para s)

Há um tempo atrás, um amigo comentou comigo sobre um desafio que envolvia ler um arquivo com 1 bilhão de linhas. Achei a ideia muito interessante, mas como estava em semana de provas na faculdade, acabei deixando para ver isso depois. Meses depois, vi um vídeo do Theo sobre o desafio e resolvi dar uma olhada mais de perto.

O objetivo do One Billion Row Challenge é calcular a temperatura mínima, máxima e média de uma lista de cidades - o detalhe é que são 1 bilhão de itens nessa lista, onde cada item consiste do nome de uma cidade e uma temperatura, sendo que cada cidade pode aparecer mais de uma vez. or fim, o programa deve exibir esses valores em ordem alfabética pelo nome da cidade.

Achei que seria divertido tentar resolver o desafio, mesmo que não houvesse uma recompensa. Enfim, fiz este texto descrevendo o meu processo.

Primeira tentativa: fazendo o código funcionar

Sempre que preciso resolver um problema mais complicado, minha primeira meta é fazer o programa funcionar. Pode não ser o código mais rápido e nem o mais limpo, mas é um código que funciona.

Basicamente, criei a estrutura Location para representar cada cidade da lista, contendo a temperatura mínima, máxima, a soma das temperaturas e quantas vezes a cidade aparece na lista (esses dois últimos são necessários para calcular a média). Sei que existe uma maneira de calcular a média diretamente, sem precisar armazenar a quantidade de temperaturas e a soma delas. Mas, como mencionei anteriormente, o objetivo era fazer o código funcionar.

A lista de dados é formada pelo nome da cidade seguido pela temperatura, separados por um ponto e vírgula. Por exemplo:

Antananarivo;15.6
Iqaluit;-20.7
Dolisie;25.8
Kuopio;-6.8

O jeito mais simples para ler os dados é utilizando o Scan, que permite ler uma linha de cada vez. Com a linha, é possível dividi-la em duas partes: os valores antes e após o ponto e vírgula. Para obter a temperatura, é possível usar o strconv.ParseFloat, que converte uma string em um float. O código completo da primeira implementação pode ser visto abaixo:

package main

import (
    "bufio"
    "fmt"
    "math"
    "os"
    "sort"
    "strconv"
    "strings"
)

type Location struct {
    min   float64
    max   float64
    sum   float64
    count int
}

func NewLocation() *Location {
    return &Location{
        min:   math.MaxInt16,
        max:   math.MinInt16,
        sum:   0,
        count: 0,
    }
}

func (loc *Location) Add(temp float64) {
    if temp  loc.max {
        loc.max = temp
    }

    loc.sum  = temp
    loc.count  = 1
}

var cpuprofile = flag.String("cpuprofile", "", "write cpu profile to file")

func main() {
    flag.Parse()
    if *cpuprofile != "" {
        f, err := os.Create(*cpuprofile)
        if err != nil {
            log.Fatal(err)
        }
        pprof.StartCPUProfile(f)
        defer pprof.StopCPUProfile()
    }

    file, _ := os.Open("./measurements.txt")
    defer file.Close()

    m := map[string]*Location{}

    scanner := bufio.NewScanner(file)
    for scanner.Scan() {
        line := scanner.Text()
        name, tempStr, _ := strings.Cut(line, ";")
        temp, _ := strconv.ParseFloat(tempStr, 32)

        loc, ok := m[name]
        if !ok {
            loc = NewLocation()
            m[name] = loc
        }
        loc.Add(temp)
    }

    keys := make([]string, 0, len(m))
    for k := range m {
        keys = append(keys, k)
    }
    sort.Strings(keys)

    for _, name := range keys {
        loc := m[name]
        mean := loc.sum / float64(loc.count)
        fmt.Printf("%s: %.1f/%.1f/%.1f\n", name, loc.min, mean, loc.max)
    }
}

Essa versão mais simples levou aproximadamente 97 segundos para rodar.

Otimizando a conversão de strings para floats

Analisando o profile da execução, percebi que um dos maiores gargalos era a função strconv.ParseFloat. Basicamente, tempo total de execução dela foi de 23 segundos (aproximadamente 23% do tempo total).

O problema dessa função é que ela é genérica, ou seja, é feita para funcionar com qualquer float válido. Porém, nossos dados têm um formato de temperatura bem específico. Veja o exemplo abaixo:

Antananarivo;15.6
Iqaluit;-20.7
Dolisie;5.8
Kuopio;-6.8

O formato da temperatura é sempre o mesmo: um ou dois dígitos antes do ponto e um dígito após o ponto, podendo incluir um sinal de menos no inicio. Assim, podemos criar uma função que converte os valores de forma específica, otimizando o processo sem a necessidade de realizar todas as verificações genéricas do ParseFloat.

func bytesToTemp(b []byte) float64 {
    var v int16
    var isNeg int16 = 1

    for i := 0; i 



Para ler os dados em formato de bytes em vez de string, alterei o retorno do Scanner de string para bytes

line := scanner.Bytes()
before, after, _ := bytes.Cut(line, []byte{';'})
name := string(before)
temp := bytesToTemp(after)

Essas pequenas mudanças fizeram o tempo de execução cair para 75 segundos.

Lendo pedaços maiores de dados

A maior vantagem de usar o Scan é que o programa não precisa carregar todo o arquivo de uma só vez na memória. Em vez disso, permite ler linha por linha, trocando desempenho por memória.

É importante ressaltar que existe um meio-termo entre ler uma linha por vez e carregar os 14 GB de dados de uma só vez. Esse meio termo é a leitura de chunks, que são pedaços de memória. Dessa forma, ao invés de ler todo o arquivo de uma vez, podemos ler blocos de 128 MB.

buf := make([]byte, chunkSize)
reader := bufio.NewReader(file)
var leftData []byte
for {
    n, err := reader.Read(buf)
    if err != nil {
        if err == io.EOF {
            break
        }
        panic(err)
    }

    chunk := append(leftData, buf[:n]...)
    lastIndex := bytes.LastIndex(chunk, []byte{'\n'})
    leftData = chunk[lastIndex 1:]

    lines := bytes.Split(chunk[:lastIndex], []byte{'\n'})

    for _, line := range lines {
        before, after, _ := bytes.Cut(line, []byte{';'})
        name := string(before)
        temp := bytesToTemp(after)

        loc, ok := m[name]
        if !ok {
            loc = NewLocation()
            m[name] = loc
        }
        loc.Add(temp)
    }
}

Com isso, o tempo de execução caiu para 70 segundos. Melhor que antes, mas ainda da para melhorar.

Alterando os tipos dos dados

É fato que todo o desafio gira em torno de números com casas decimais. Porém, lidar com pontos flutuantes é sempre um grande desafio (vide IEEE-754). Nesse caso, por que não usar inteiros para representar a temperatura?

type Location struct {
    min   int16
    max   int16
    sum   int32
    count int32
}

Como definido anteriormente, uma temperatura é sempre representada por até três dígitos. Logo, removendo a vírgula, os valores podem variar entre -999 e 999, de modo que int16 é o suficiente para representá-los. Para a soma e a contagem, int32 é mais que o suficiente, visto que esse tipo pode variar entre -2147483648 e 2147483647.

Dado que agora esperamos um valor inteiro de 16 bits para a temperatura, precisamos modificar a função bytesToTemp. Para isso, mudamos o retorno para int16 e removemos a divisão no final. Assim, a função vai sempre vai retornar um número inteiro.

func bytesToTemp(b []byte) int16 {
    var v int16
    var isNeg int16 = 1

    for i := 0; i 



Para finalizar, modifiquei a função Add para aceitar os valores inteiros e ajustei o print para dividir os valores antes de mostrá-los na tela. Com isso, o tempo caiu três segundos, indo para 60 segundos. Não é muito, mas uma vitória é uma vitória.

Melhorando a Performance da Conversão de Bytes para String

Novamente analisando o profile, vi que tinha uma certa função chamada slicebytetostring que custava 13,5 segundos de tempo de execução. Analisando, descobri que essa função é a responsável por converter um conjunto de bytes em uma string (o próprio nome da função deixa claro isso). No caso, essa é a função chamada internamente quando se usa a função string(bytes).

Em Go, assim como na maioria das linguagens, strings são imutáveis, o que significa que não podem ser modificadas após serem criadas (normalmente, quando se faz isso, uma nova string é criada). Por outro lado, listas são mutáveis. Ou seja, quando se faz uma conversão de uma lista de bytes para string, é preciso criar uma cópia da lista para garantir que a string não mude se a lista mudar.

Para evitar o custo adicional de alocação de memória nessas conversões, podemos utilizar a biblioteca unsafe para realizar a conversão de bytes para string (Nota: ela é chamada de unsafe por um motivo).

name := unsafe.String(unsafe.SliceData(before), len(before))

Diferente do caso anterior, a função acima reutiliza os bytes passados para gerar a string. O problema disso é que, se a lista original mudar, a string resultante também será afetada. Embora possamos garantir que isso não ocorrerá neste contexto específico, em aplicações maiores e mais complexas, o uso de unsafe pode se tornar bem inseguro.

Com essa mudança, reduzimos o tempo de execução para 51 segundos. Nada mal.

Reimplementando bytes.Cut

Lembra que eu mencionei que as temperaturas sempre tinham formatos específicos? Então, segundo o profile da execução, que separa a linha em duas partes (nome da cidade e temperatura), custa 5.38 segundos para rodar. E refizermos ela na mão?

Para separar os dois valores, precisamos encontrar onde está o ";". Como a gente já sabe, os valores da temperatura podem ter entre três e cinco caracteres. Assim, precisamos verificar se o caractere anterior aos dígitos é um ";". Simples, não?

idx := 0
if line[len(line)-4] == ';' {
    idx = len(line) - 4
} else if line[len(line)-5] == ';' {
    idx = len(line) - 5
} else {
    idx = len(line) - 6
}

before := line[:idx]
after := line[idx 1:]

Com isso, o tempo de execução foi para 46 segundos, cerca de 5 segundos a menos que antes (quem diria, não é?).

Paralelismo para acelerar o processamento

Todo esse tempo, nosso objetivo foi tornar o código o mais rápido possível em um núcleo. Mudando coisas aqui e ali, diminuímos o tempo de 97 segundos para 46 segundos. Claro, ainda daria para melhorar o tempo sem ter que lidar com paralelismo, mas a vida é curta demais para se preocupar com isso, não é?

Para poder rodar o código em vários núcleos, decidi usar a estrutura de canais nativa do Go. Além disso, também criei um grupo de espera que vai indicar quando o processamento dos dados terminaram.

Vale destacar que workers, nesse caso, é uma constante que define quantas goroutines serão criadas para processar os dados. No meu caso, são 12, visto que eu tenho um processador com 6 núcleos e 12 threads.

chunkChan := make(chan []byte, workers)
var wg sync.WaitGroup
wg.Add(workers)

O próximo passo foi criar as goroutines que serão responsável por receber os dados do canal e processá-los. A lógica de processamento dos dados é semelhante ao modelo single thread.

for i := 0; i 



Por fim, o código responsável por ler os dados do disco e enviá-los ao canal:

for {
    n, err := reader.Read(buf)
    if err != nil {
        if err == io.EOF {
            break
        }
        panic(err)
    }

    chunk := append(leftData, buf[:n]...)
    lastIndex := bytes.LastIndex(chunk, []byte{'\n'})
    leftData = chunk[lastIndex 1:]
    chunkChan 



Vale ressaltar que os mapas em Go não são thread-safe. Isso significa que acessar ou alterar dados no mesmo mapa de forma concorrente pode levar a problemas de consistência ou erros. Embora não tenha observado problemas durante meus testes, vale a pena tratar esse problema.

Uma das maneiras de resolver esse problema seria criar um mecanismo de trava para o mapa, permitindo que somente uma goroutine consiga utilizá-lo por vez. Isso, claro, poderia tornar a execução um pouco mais lenta.

A segunda alternativa consiste em criar um mapa para cada uma das goroutines, de modo que não vai existir concorrência entre elas. Por fim, os mapas são colocados em um novo canal e os valores do mapa principal calculados a partir deles. Essa solução ainda vai ter um custo, mas vai ser menor que a anterior.

close(chunkChan)

go func() {
    wg.Wait()
    close(mapChan)
}()

keys := make([]string, 0, 825)

m := map[string]*Location{}
for lm := range mapChan {
    for lk, lLoc := range lm {
        loc, ok := m[lk]
        if !ok {
            keys = append(keys, lk)
            m[lk] = lLoc
            continue
        }

        if lLoc.min  loc.max {
            loc.max = lLoc.max
        }
        loc.sum  = lLoc.sum
        loc.count  = lLoc.count
    }
}

Além disso, como o processamento passou a ser distribuído entre diferentes núcleos, diminui o tamanho do chunk de 128 MB para 2 MB. Cheguei nesse número testando vários valores, tendo entre 1 MB e 5 MB os melhores resultando. Na média, 2 MB obteve o melhor desempenho.

Enfim, o nosso tempo de processamento caiu de 46 segundos para... 12 segundos.

Otimizando a quebra de linhas no chunk

Todas as vezes que eu analisava o profile, a função bytes.Split chamava a minha atenção. O tempo de execução dela era de 16 segundos (tempo total, considerando todas as goroutines), o que parece justo, visto que ela é responsável por quebrar um chunk em linhas. No entanto, parecia um trabalho dobrado, dado que ela primeiro quebra as linhas para, em seguida, as linhas serem lidas uma a uma. Por que não fazer ambos ao mesmo tempo?

Minha abordagem foi percorrer o chunk e verificar se o byte atual correspondia a um \n. Dessa forma, consegui percorrer todas as linhas ao mesmo tempo em que as quebrava, processando em seguida.

start := 0
start := 0
for end, b := range chunk {
    if b != '\n' {
        continue
    }
    before, after := parseLine(chunk[start:end])
    // ...
    start = end   1
}

Com essa simples mudança, o tempo de execução caiu para aproximadamente 9 segundos.

Executed in    8.45 secs    fish           external
   usr time   58.47 secs  152.00 micros   58.47 secs
   sys time    4.52 secs  136.00 micros    4.52 secs

Próximos passos

Atualmente, o maior gargalo da aplicação é o mapa. Somando todas as operações de leitura e escrita, são 32 segundos (de longe, o tempo mais alto). Talvez criar um algoritmo de hash mais eficiente resolva? Fica como ideia para o futuro.

No mais, conseguimos diminuir o tempo de 1 minuto e 40 segundos para quase 8 segundos, sem usar qualquer biblioteca externa. Além disso, tentando fazer a aplicação ficar cada vez mais rápida, me fez aprender muita coisa.

版本聲明 本文轉載於:https://dev.to/jnaraujo/resolvendo-o-desafio-de-um-bilhao-de-linhas-em-go-de-1m40s-para-84s-5hi9?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 為什麼我在Silverlight Linq查詢中獲得“無法找到查詢模式的實現”錯誤?
    為什麼我在Silverlight Linq查詢中獲得“無法找到查詢模式的實現”錯誤?
    查詢模式實現缺失:解決“無法找到”錯誤在銀光應用程序中,嘗試使用LINQ建立錯誤的數據庫連接的嘗試,無法找到以查詢模式的實現。 ”當省略LINQ名稱空間或查詢類型缺少IEnumerable 實現時,通常會發生此錯誤。 解決問題來驗證該類型的質量是至關重要的。在此特定實例中,tblpersoon可能...
    程式設計 發佈於2025-05-25
  • 在GO中構造SQL查詢時,如何安全地加入文本和值?
    在GO中構造SQL查詢時,如何安全地加入文本和值?
    在go中構造文本sql查詢時,在go sql queries 中,在使用conting and contement和contement consem per時,尤其是在使用integer per當per當per時,per per per當per. [&​​&&&&&&&&&&&&&&&默元組方法在...
    程式設計 發佈於2025-05-25
  • 為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    為什麼不````''{margin:0; }`始終刪除CSS中的最高邊距?
    在CSS 問題:不正確的代碼: 全球範圍將所有餘量重置為零,如提供的代碼所建議的,可能會導致意外的副作用。解決特定的保證金問題是更建議的。 例如,在提供的示例中,將以下代碼添加到CSS中,將解決餘量問題: body H1 { 保證金頂:-40px; } 此方法更精確,避免了由全局保證金重置...
    程式設計 發佈於2025-05-25
  • 如何解決由於Android的內容安全策略而拒絕加載腳本... \”錯誤?
    如何解決由於Android的內容安全策略而拒絕加載腳本... \”錯誤?
    揭開神秘:content Security Policy Directive errors 遇到Enigmatic錯誤“拒絕加載腳本...此問題源於內容安全策略(CSP)指令,該指令限制了不受信任來源的資源加載。 However, resolving this challenge can be s...
    程式設計 發佈於2025-05-25
  • JavaScript計算兩個日期之間天數的方法
    JavaScript計算兩個日期之間天數的方法
    How to Calculate the Difference Between Dates in JavascriptAs you attempt to determine the difference between two dates in Javascript, consider this s...
    程式設計 發佈於2025-05-25
  • 如何使用FormData()處理多個文件上傳?
    如何使用FormData()處理多個文件上傳?
    )處理多個文件輸入時,通常需要處理多個文件上傳時,通常是必要的。 The fd.append("fileToUpload[]", files[x]); method can be used for this purpose, allowing you to send multi...
    程式設計 發佈於2025-05-25
  • 在JavaScript中如何並發運行異步操作並正確處理錯誤?
    在JavaScript中如何並發運行異步操作並正確處理錯誤?
    同意操作execution 在執行asynchronous操作時,相關的代碼段落會遇到一個問題,當執行asynchronous操作:此實現在啟動下一個操作之前依次等待每個操作的完成。要啟用並發執行,需要進行修改的方法。 第一個解決方案試圖通過獲得每個操作的承諾來解決此問題,然後單獨等待它們: c...
    程式設計 發佈於2025-05-25
  • 如何避免Go語言切片時的內存洩漏?
    如何避免Go語言切片時的內存洩漏?
    ,a [j:] ...雖然通常有效,但如果使用指針,可能會導致內存洩漏。這是因為原始的備份陣列保持完整,這意味著新切片外部指針引用的任何對象仍然可能佔據內存。 copy(a [i:] 對於k,n:= len(a)-j i,len(a); k
    程式設計 發佈於2025-05-25
  • Java開發者如何保護數據庫憑證免受反編譯?
    Java開發者如何保護數據庫憑證免受反編譯?
    在java 在單獨的配置文件保護數據庫憑證的最有效方法中存儲憑據是將它們存儲在單獨的配置文件中。該文件可以在運行時加載,從而使登錄數據從編譯的二進製文件中遠離。 使用prevereness class import java.util.prefs.preferences; 公共類示例{ 首選...
    程式設計 發佈於2025-05-25
  • 為什麼儘管有效代碼,為什麼在PHP中捕獲輸入?
    為什麼儘管有效代碼,為什麼在PHP中捕獲輸入?
    在php ;?>" method="post">The intention is to capture the input from the text box and display it when the submit button is clicked.但是,輸出...
    程式設計 發佈於2025-05-25
  • 切換到MySQLi後CodeIgniter連接MySQL數據庫失敗原因
    切換到MySQLi後CodeIgniter連接MySQL數據庫失敗原因
    Unable to Connect to MySQL Database: Troubleshooting Error MessageWhen attempting to switch from the MySQL driver to the MySQLi driver in CodeIgniter,...
    程式設計 發佈於2025-05-25
  • CSS強類型語言解析
    CSS強類型語言解析
    您可以通过其强度或弱输入的方式对编程语言进行分类的方式之一。在这里,“键入”意味着是否在编译时已知变量。一个例子是一个场景,将整数(1)添加到包含整数(“ 1”)的字符串: result = 1 "1";包含整数的字符串可能是由带有许多运动部件的复杂逻辑套件无意间生成的。它也可以是故意从单个真理...
    程式設計 發佈於2025-05-25
  • 查找當前執行JavaScript的腳本元素方法
    查找當前執行JavaScript的腳本元素方法
    如何引用當前執行腳本的腳本元素在某些方案中理解問題在某些方案中,開發人員可能需要將其他腳本動態加載其他腳本。但是,如果Head Element尚未完全渲染,則使用document.getElementsbytagname('head')[0] .appendChild(v)的常規方...
    程式設計 發佈於2025-05-25
  • PHP SimpleXML解析帶命名空間冒號的XML方法
    PHP SimpleXML解析帶命名空間冒號的XML方法
    在php 很少,請使用該限制很大,很少有很高。例如:這種技術可確保可以通過遍歷XML樹和使用兒童()方法()方法的XML樹和切換名稱空間來訪問名稱空間內的元素。
    程式設計 發佈於2025-05-25
  • 在Ubuntu/linux上安裝mysql-python時,如何修復\“ mysql_config \”錯誤?
    在Ubuntu/linux上安裝mysql-python時,如何修復\“ mysql_config \”錯誤?
    mysql-python安裝錯誤:“ mysql_config找不到”“ 由於缺少MySQL開發庫而出現此錯誤。解決此問題,建議在Ubuntu上使用該分發的存儲庫。使用以下命令安裝Python-MysqldB: sudo apt-get安裝python-mysqldb sudo pip in...
    程式設計 發佈於2025-05-25

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3