”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > 使用 JIT 编译器让我的 Python 循环变慢?

使用 JIT 编译器让我的 Python 循环变慢?

发布于2024-09-01
浏览:401

If you haven't heard, Python loops can be slow--especially when working with large datasets. If you're trying to make calculations across millions of data points, execution time can quickly become a bottleneck. Luckily for us, Numba has a Just-in-Time (JIT) compiler that we can use to help speed up our numerical computations and loops in Python.

The other day, I found myself in need of a simple exponential smoothing function in Python. This function needed to take in array and return an array of the same length with the smoothed values. Typically, I try and avoid loops where possible in Python (especially when dealing with Pandas DataFrames). At my current level of capability, I didn't see how to avoid using a loop to exponentially smooth an array of values.

I am going to walk through the process of creating this exponential smoothing function and testing it with and without the JIT compilation. I'll briefly touch on JIT and how I made sure to code the the loop in a manner that worked with the nopython mode.

What is JIT?

JIT compilers are particularly useful with higher-level languages like Python, JavaScript, and Java. These languages are known for their flexibility and ease of use, but they can suffer from slower execution speeds compared to lower-level languages like C or C . JIT compilation helps bridge this gap by optimizing the execution of code at runtime, making it faster without sacrificing the advantages of these higher-level languages.

When using the nopython=True mode in the Numba JIT compiler, the Python interpreter is bypassed entirely, forcing Numba to compile everything down to machine code. This results in even faster execution by eliminating the overhead associated with Python's dynamic typing and other interpreter-related operations.

Building the fast exponential smoothing function

Exponential smoothing is a technique used to smooth out data by applying a weighted average over past observations. The formula for exponential smoothing is:

St=αVt (1α)St1 S_t = \alpha \cdot V_t (1 - \alpha) \cdot S_{t-1} St=α⋅Vt (1−α)⋅St−1

where:

  • StS_tSt : Represents the smoothed value at time ttt .
  • VtV_tVt : Represents the original value at time ttt from the values array.
  • α\alphaα : The smoothing factor, which determines the weight of the current value VtV_tVt in the smoothing process.
  • St1S_{t-1}St−1 : Represents the smoothed value at time t1t-1t−1 , i.e., the previous smoothed value.

The formula applies exponential smoothing, where:

  • The new smoothed value StS_tSt is a weighted average of the current value VtV_tVt and the previous smoothed value St1S_{t-1}St−1 .
  • The factor α\alphaα determines how much influence the current value VtV_tVt has on the smoothed value compared to the previous smoothed value St1S_{t-1}St−1 .

To implement this in Python, and stick to functionality that works with nopython=True mode, we will pass in an array of data values and the alpha float. I default the alpha to 0.33333333 because that fits my current use case. We will initialize an empty array to store the smoothed values in, loop and calculate, and return smoothed values. This is what it looks like:

@jit(nopython=True) 
def fast_exponential_smoothing(values, alpha=0.33333333): 

    smoothed_values = np.zeros_like(values) # Array of zeros the same length as values
    smoothed_values[0] = values[0] # Initialize the first value 

    for i in range(1, len(values)): 
        smoothed_values[i] = alpha * values[i]   (1 - alpha) * smoothed_values[i - 1]
    return smoothed_values

Simple, right? Let's see if JIT is doing anything now. First, we need to create a large array of integers. Then, we call the function, time how long it took to compute, and print the results.

# Generate a large random array of a million integers
large_array = np.random.randint(1, 100, size=1_000_000)

# Test the speed of fast_exponential_smoothing
start_time = time.time()
smoothed_result = fast_exponential_smoothing(large_array)
end_time = time.time()
print(f"Exponential Smoothing with JIT took {end_time - start_time:.6f} seconds with 1,000,000 sample array.")

This can be repeated and altered just a bit to test the function without the JIT decorator. Here are the results that I got:

Using JIT-compilers to make my Python loops slower?

Wait, what the f***?

I thought JIT was supposed to speed it up. It looks like the standard Python function beat the JIT version and a version that attempts to use no recursion. That's strange. I guess you can't just slap the JIT decorator on something and make it go faster? Perhaps simple array loops and NumPy operations are already pretty efficient? Perhaps I don't understand the use case for JIT as well as I should? Maybe we should try this on a more complex loop?

Here is the entire code python file I created for testing:

import numpy as np
from numba import jit
import time

@jit(nopython=True) 
def fast_exponential_smoothing(values, alpha=0.33333333): 

    smoothed_values = np.zeros_like(values) # Array of zeros the same length as values
    smoothed_values[0] = values[0] # Initialize the first value 

    for i in range(1, len(values)): 
        smoothed_values[i] = alpha * values[i]   (1 - alpha) * smoothed_values[i - 1]
        return smoothed_values

def fast_exponential_smoothing_nojit(values, alpha=0.33333333):

    smoothed_values = np.zeros_like(values) # Array of zeros the same length as values
    smoothed_values[0] = values[0] # Initialize the first value 

    for i in range(1, len(values)): 
        smoothed_values[i] = alpha * values[i]   (1 - alpha) * smoothed_values[i - 1]
        return smoothed_values

def non_recursive_exponential_smoothing(values, alpha=0.33333333):
    n = len(values)
    smoothed_values = np.zeros(n)

    # Initialize the first value
    smoothed_values[0] = values[0]

    # Calculate the rest of the smoothed values
    decay_factors = (1 - alpha) ** np.arange(1, n)
    cumulative_weights = alpha * decay_factors
    smoothed_values[1:] = np.cumsum(values[1:] * np.flip(cumulative_weights))   (1 - alpha) ** np.arange(1, n) * values[0]

    return smoothed_values

# Generate a large random array of a million integers
large_array = np.random.randint(1, 1000, size=10_000_000)

# Test the speed of fast_exponential_smoothing
start_time = time.time()
smoothed_result = fast_exponential_smoothing_nojit(large_array)
end_time = time.time()
print(f"Exponential Smoothing without JIT took {end_time - start_time:.6f} seconds with 1,000,000 sample array.")

# Test the speed of fast_exponential_smoothing
start_time = time.time()
smoothed_result = fast_exponential_smoothing(large_array)
end_time = time.time()
print(f"Exponential Smoothing with JIT took {end_time - start_time:.6f} seconds with 1,000,000 sample array.")

# Test the speed of fast_exponential_smoothing
start_time = time.time()
smoothed_result = non_recursive_exponential_smoothing(large_array)
end_time = time.time()
print(f"Exponential Smoothing with no recursion or JIT took {end_time - start_time:.6f} seconds with 1,000,000 sample array.")

I attempted to create the non-recursive version to see if vectorized operations across arrays would make it go faster, but it seems to be pretty damn fast as it is. These results remained the same all the way up until I didn't have enough memory to make the array of random integers.

Let me know what you think about this in the comments. I am by no means a professional developer, so I am accepting all comments, criticisms, or educational opportunities.

Until next time.

Happy coding!

版本声明 本文转载于:https://dev.to/kanndide/using-jit-compilers-to-make-my-python-loops-slower-4m66?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • Java中Lambda表达式为何需要“final”或“有效final”变量?
    Java中Lambda表达式为何需要“final”或“有效final”变量?
    Lambda Expressions Require "Final" or "Effectively Final" VariablesThe error message "Variable used in lambda expression shou...
    编程 发布于2025-07-03
  • Java是否允许多种返回类型:仔细研究通用方法?
    Java是否允许多种返回类型:仔细研究通用方法?
    在Java中的多个返回类型:一种误解类型:在Java编程中揭示,在Java编程中,Peculiar方法签名可能会出现,可能会出现,使开发人员陷入困境,使开发人员陷入困境。 getResult(string s); ,其中foo是自定义类。该方法声明似乎拥有两种返回类型:列表和E。但这确实是如此吗...
    编程 发布于2025-07-03
  • 如何使用组在MySQL中旋转数据?
    如何使用组在MySQL中旋转数据?
    在关系数据库中使用mySQL组使用mySQL组进行查询结果,在关系数据库中使用MySQL组,转移数据的数据是指重新排列的行和列的重排以增强数据可视化。在这里,我们面对一个共同的挑战:使用组的组将数据从基于行的基于列的转换为基于列。 Let's consider the following ...
    编程 发布于2025-07-03
  • 反射动态实现Go接口用于RPC方法探索
    反射动态实现Go接口用于RPC方法探索
    在GO 使用反射来实现定义RPC式方法的界面。例如,考虑一个接口,例如:键入myService接口{ 登录(用户名,密码字符串)(sessionId int,错误错误) helloworld(sessionid int)(hi String,错误错误) } 替代方案而不是依靠反射...
    编程 发布于2025-07-03
  • Java字符串非空且非null的有效检查方法
    Java字符串非空且非null的有效检查方法
    检查字符串是否不是null而不是空的 if(str!= null && str.isementy())二手: if(str!= null && str.length()== 0) option 3:trim()。isement(Isement() trim whitespace whitesp...
    编程 发布于2025-07-03
  • Go web应用何时关闭数据库连接?
    Go web应用何时关闭数据库连接?
    在GO Web Applications中管理数据库连接很少,考虑以下简化的web应用程序代码:出现的问题:何时应在DB连接上调用Close()方法?,该特定方案将自动关闭程序时,该程序将在EXITS EXITS EXITS出现时自动关闭。但是,其他考虑因素可能保证手动处理。选项1:隐式关闭终止数...
    编程 发布于2025-07-03
  • 为什么不````''{margin:0; }`始终删除CSS中的最高边距?
    为什么不````''{margin:0; }`始终删除CSS中的最高边距?
    在CSS 问题:不正确的代码: 全球范围将所有余量重置为零,如提供的代码所建议的,可能会导致意外的副作用。解决特定的保证金问题是更建议的。 例如,在提供的示例中,将以下代码添加到CSS中,将解决余量问题: body H1 { 保证金顶:-40px; } 此方法更精确,避免了由全局保证金重置引...
    编程 发布于2025-07-03
  • 为什么PYTZ最初显示出意外的时区偏移?
    为什么PYTZ最初显示出意外的时区偏移?
    与pytz 最初从pytz获得特定的偏移。例如,亚洲/hong_kong最初显示一个七个小时37分钟的偏移: 差异源利用本地化将时区分配给日期,使用了适当的时区名称和偏移量。但是,直接使用DateTime构造器分配时区不允许进行正确的调整。 example pytz.timezone(...
    编程 发布于2025-07-03
  • 如何在其容器中为DIV创建平滑的左右CSS动画?
    如何在其容器中为DIV创建平滑的左右CSS动画?
    通用CSS动画,用于左右运动 ,我们将探索创建一个通用的CSS动画,以向左和右移动DIV,从而到达其容器的边缘。该动画可以应用于具有绝对定位的任何div,无论其未知长度如何。问题:使用左直接导致瞬时消失 更加流畅的解决方案:混合转换和左 [并实现平稳的,线性的运动,我们介绍了线性的转换。这...
    编程 发布于2025-07-03
  • 同实例无需转储复制MySQL数据库方法
    同实例无需转储复制MySQL数据库方法
    在同一实例上复制一个MySQL数据库而无需转储在同一mySQL实例上复制数据库,而无需创建InterMediate sqql script。以下方法为传统的转储和IMPORT过程提供了更简单的替代方法。 直接管道数据 MySQL手动概述了一种允许将mysqldump直接输出到MySQL clie...
    编程 发布于2025-07-03
  • 如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    如何为PostgreSQL中的每个唯一标识符有效地检索最后一行?
    postgresql:为每个唯一标识符在postgresql中提取最后一行,您可能需要遇到与数据集合中每个不同标识的信息相关的信息。考虑以下数据:[ 1 2014-02-01 kjkj 在数据集中的每个唯一ID中检索最后一行的信息,您可以在操作员上使用Postgres的有效效率: id dat...
    编程 发布于2025-07-03
  • input: Why Does "Warning: mysqli_query() expects parameter 1 to be mysqli, resource given" Error Occur and How to Fix It?

output: 解决“Warning: mysqli_query() 参数应为 mysqli 而非 resource”错误的解析与修复方法
    input: Why Does "Warning: mysqli_query() expects parameter 1 to be mysqli, resource given" Error Occur and How to Fix It? output: 解决“Warning: mysqli_query() 参数应为 mysqli 而非 resource”错误的解析与修复方法
    mysqli_query()期望参数1是mysqli,resource给定的,尝试使用mysql Query进行执行MySQLI_QUERY_QUERY formation,be be yessqli:sqli:sqli:sqli:sqli:sqli:sqli: mysqli,给定的资源“可能发...
    编程 发布于2025-07-03
  • 表单刷新后如何防止重复提交?
    表单刷新后如何防止重复提交?
    在Web开发中预防重复提交 在表格提交后刷新页面时,遇到重复提交的问题是常见的。要解决这个问题,请考虑以下方法: 想象一下具有这样的代码段,看起来像这样的代码段:)){ //数据库操作... 回声“操作完成”; 死(); } ?> ...
    编程 发布于2025-07-03
  • 您可以使用CSS在Chrome和Firefox中染色控制台输出吗?
    您可以使用CSS在Chrome和Firefox中染色控制台输出吗?
    在javascript console 中显示颜色是可以使用chrome的控制台显示彩色文本,例如红色的redors,for for for for错误消息?回答是的,可以使用CSS将颜色添加到Chrome和Firefox中的控制台显示的消息(版本31或更高版本)中。要实现这一目标,请使用以下模...
    编程 发布于2025-07-03
  • Async Void vs. Async Task在ASP.NET中:为什么Async Void方法有时会抛出异常?
    Async Void vs. Async Task在ASP.NET中:为什么Async Void方法有时会抛出异常?
    在ASP.NET async void void async void void void void void void void的设计无需返回asynchroncon而无需返回任务对象。他们在执行过程中增加未偿还操作的计数,并在完成后减少。在某些情况下,这种行为可能是有益的,例如未期望或明确...
    编程 发布于2025-07-03

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3