”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 编程 > JavaScript 设计模式指南

JavaScript 设计模式指南

发布于2024-08-24
浏览:819

Written by Hussain Arif✏️

Imagine a situation where a group of architects wants to design a skyscraper. During the design stage, they would have to consider a plethora of factors, for example:

  • The architectural style — should the building be brutalist, minimalist, or something else?
  • The width of the base — what sizing is needed to prevent collapse during windy days?
  • Protection against natural disasters — what preventative structural measures need to be in place based on the location of this building to prevent damage from earthquakes, flooding, etc.?

There can be many factors to consider, but one thing can be known for certain: there’s most likely a blueprint already available to help construct this skyscraper. Without a common design or plan, these architects would have to reinvent the wheel, which can lead to confusion and multiple inefficiencies.

Similarly in the programming world, developers often refer to a set of design patterns to help them build software while following clean code principles. Moreover, these patterns are ubiquitous, thus letting programmers focus on shipping new features instead of reinventing the wheel every time.

In this article, you will learn about a few commonly used JavaScript design patterns, and together we’ll build small Node.js projects to illustrate the usage of each design pattern.

What are design patterns in software engineering?

Design patterns are pre-made blueprints that developers can tailor to solve repetitive design problems during coding. One crucial thing to remember is that these blueprints are not code snippets but rather general concepts to approach incoming challenges.

Design patterns have many benefits:

  • Tried and tested — they solve countless problems in software design. Knowing and applying patterns in code is useful because doing so can help you solve all sorts of problems using principles of object-oriented design
  • Define a common language — design patterns help teams communicate in an efficient manner. For example, a teammate can say, “We should just use the factory method to solve this issue,” and everyone will understand what they mean and the motive behind their suggestion

In this article, we will cover three categories of design patterns:

  • Creational — Used for creating objects
  • Structural — Assembling these objects to form a working structure
  • Behavioral — Assigning responsibilities between those objects

Let’s see these design patterns in action!

Creational design patterns

As the name suggests, creational patterns comprise various methods to help developers create objects.

Factory

The factory method is a pattern for creating objects that allow more control over object creation. This method is suitable for cases where we want to keep the logic for object creation centralized in one place.

Here is some sample code that showcases this pattern in action:

//file name: factory-pattern.js
//use the factory JavaScript design pattern:
//Step 1: Create an interface for our object. In this case, we want to create a car
const createCar = ({ company, model, size }) => ({
//the properties of the car:
  company,
  model,
  size,
  //a function that prints out the car's properties:
  showDescription() {
    console.log(
      "The all new ",
      model,
      " is built by ",
      company,
      " and has an engine capacity of ",
      size,
      " CC "
    );
  },
});
//Use the 'createCar' interface to create a car
const challenger = createCar({
  company: "Dodge",
  model: "Challenger",
  size: 6162,
});
//print out this object's traits:
challenger.showDescription();

Let’s break down this code piece by piece:createCarCar

  • Each Car has three properties: company , model and size. Additionally, we have also defined a showDescription function, which will log out the properties of the object. Furthermore, notice that the createCar method demonstrates how we can have granular control when it comes to instantiating objects in memory
  • Later on, we used our createCar instance to initialize an object called challenger
  • Finally, in the last line, we invoked the showDescription on our challenger instance

Let’s test it out! We should expect the program to log out the details of our newly-created Car instance: JavaScript design patterns guide

Builder

The builder method lets us build objects using step-by-step object construction. As a result, this design pattern is great for situations where we want to create an object and only apply necessary functions. As a result, this allows for greater flexibility.

Here is a block of code that uses the builder pattern to create a Car object:

//builder-pattern.js
//Step 1: Create a class reperesentation for our toy car:
class Car {
  constructor({ model, company, size }) {
    this.model = model;
    this.company = company;
    this.size = size;
  }
}
//Use the 'builder' pattern to extend this class and add functions
//note that we have seperated these functions in their entities.
//this means that we have not defined these functions in the 'Car' definition.
Car.prototype.showDescription = function () {
  console.log(
    this.model  
      " is made by "  
      this.company  
      " and has an engine capacity of "  
      this.size  
      " CC "
  );
};
Car.prototype.reduceSize = function () {
  const size = this.size - 2; //function to reduce the engine size of the car.
  this.size = size;
};
const challenger = new Car({
  company: "Dodge",
  model: "Challenger",
  size: 6162,
});
//finally, print out the properties of the car before and after reducing the size:
challenger.showDescription();
console.log('reducing size...');
//reduce size of car twice:
challenger.reduceSize();
challenger.reduceSize();
challenger.showDescription();

Here’s what we’re doing in the code block above:

  • As a first step, we created a Car class which will help us instantiate objects. Notice that earlier in the factory pattern, we used a createCar function, but here we are using classes. This is because classes in JavaScript let developers construct objects in pieces. Or, in simpler words, to implement the JavaScript builder design pattern, we have to opt for the object-oriented paradigm
  • Afterwards, we used the prototype object to extend the Car class. Here, we created two functions — showDescription and reduceSize
  • Later on, we then created our Car instance, named it challenger, and then logged out its information
  • Finally, we invoked the reduceSize method on this object to decrement its size, and then we printed its properties once more

The expected output should be the properties of the challenger object before and after we reduced its size by four units: JavaScript design patterns guide   This confirms that our builder pattern implementation in JavaScript was successful!

Structural design patterns

Structural design patterns focus on how different components of our program work together.

Adapter

The adapter method allows objects with conflicting interfaces to work together. A great use case for this pattern is when we want to adapt old code to a new codebase without introducing breaking changes:

//adapter-pattern.js
//create an array with two fields: 
//'name' of a band and the number of 'sold' albums
const groupsWithSoldAlbums = [
  {
    name: "Twice",
    sold: 23,
  },
  { name: "Blackpink", sold: 23 },
  { name: "Aespa", sold: 40 },
  { name: "NewJeans", sold: 45 },
];
console.log("Before:");
console.log(groupsWithSoldAlbums);
//now we want to add this object to the 'groupsWithSoldAlbums' 
//problem: Our array can't accept the 'revenue' field
// we want to change this field to 'sold'
var illit = { name: "Illit", revenue: 300 };
//Solution: Create an 'adapter' to make both of these interfaces..
//..work with each other
const COST_PER_ALBUM = 30;
const convertToAlbumsSold = (group) => {
  //make a copy of the object and change its properties
  const tempGroup = { name: group.name, sold: 0 };
  tempGroup.sold = parseInt(group.revenue / COST_PER_ALBUM);
  //return this copy:
  return tempGroup;
};
//use our adapter to make a compatible copy of the 'illit' object:
illit = convertToAlbumsSold(illit);
//now that our interfaces are compatible, we can add this object to the array
groupsWithSoldAlbums.push(illit);
console.log("After:");
console.log(groupsWithSoldAlbums);

Here’s what’s happening in this snippet:

  • First, we created an array of objects called groupsWithSoldAlbums. Each object will have a name and sold property
  • We then made an illit object which had two properties — name and revenue. Here, we want to append this to the groupsWithSoldAlbums array. This might be an issue, since the array doesn’t accept a revenue property
  • To mitigate this problem, use the adapter method. The convertToAlbumsSold function will adjust the illit object so that it can be added to our array

When this code is run, we expect our illit object to be part of the groupsWithSoldAlbums list: JavaScript design patterns guide

Decorator

This design pattern lets you add new methods and properties to objects after creation. This is useful when we want to extend the capabilities of a component during runtime.

If you come from a React background, this is similar to using Higher Order Components. Here is a block of code that demonstrates the use of the JavaScript decorator design pattern:

//file name: decorator-pattern.js
//Step 1: Create an interface
class MusicArtist {
  constructor({ name, members }) {
    this.name = name;
    this.members = members;
  }
  displayMembers() {
    console.log(
      "Group name",
      this.name,
      " has",
      this.members.length,
      " members:"
    );
    this.members.map((item) => console.log(item));
  }
}
//Step 2: Create another interface that extends the functionality of MusicArtist
class PerformingArtist extends MusicArtist {
  constructor({ name, members, eventName, songName }) {
    super({ name, members });
    this.eventName = eventName;
    this.songName = songName;
  }
  perform() {
    console.log(
      this.name  
        " is now performing at "  
        this.eventName  
        " They will play their hit song "  
        this.songName
    );
  }
}
//create an instance of PerformingArtist and print out its properties:
const akmu = new PerformingArtist({
  name: "Akmu",
  members: ["Suhyun", "Chanhyuk"],
  eventName: "MNET",
  songName: "Hero",
});
akmu.displayMembers();
akmu.perform();

Let's explain what's happening here:

  • In the first step, we created a MusicArtist class which has two properties: name and members. It also has a displayMembers method, which will print out the name and the members of the current music band
  • Later on, we extended MusicArtist and created a child class called PerformingArtist. In addition to the properties of MusicArtist, the new class will have two more properties: eventName and songName. Furthermore, PerformingArtist also has a perform function, which will print out the name and the songName properties to the console
  • Afterwards, we created a PerformingArtist instance and named it akmu
  • Finally, we logged out the details of akmu and invoked the perform function

The output of the code should confirm that we successfully added new capabilities to our music band via the PerformingArtist class: JavaScript design patterns guide

Behavioral design patterns

This category focuses on how different components in a program communicate with each other.

Chain of Responsibility

The Chain of Responsibility design pattern allows for passing requests through a chain of components. When the program receives a request, components in the chain either handle it or pass it on until the program finds a suitable handler.

Here’s an illustration that explains this design pattern: JavaScript design patterns guide The bucket, or request, is passed down the chain of components until a capable component is found. When a suitable component is found, it will process the request. Source: Refactoring Guru.[/caption] The best use for this pattern is a chain of Express middleware functions, where a function would either process an incoming request or pass it to the next function via the next() method:

//Real-world situation: Event management of a concert
//implement COR JavaScript design pattern:
//Step 1: Create a class that will process a request
class Leader {
  constructor(responsibility, name) {
    this.responsibility = responsibility;
    this.name = name;
  }
  //the 'setNext' function will pass the request to the next component in the chain.
  setNext(handler) {
    this.nextHandler = handler;
    return handler;
  }
  handle(responsibility) {
  //switch to the next handler and throw an error message:
    if (this.nextHandler) {
      console.log(this.name   " cannot handle operation: "   responsibility);
      return this.nextHandler.handle(responsibility);
    }
    return false;
  }
}
//create two components to handle certain requests of a concert
//first component: Handle the lighting of the concert:
class LightsEngineerLead extends Leader {
  constructor(name) {
    super("Light management", name);
  }
  handle(responsibility) {
  //if 'LightsEngineerLead' gets the responsibility(request) to handle lights,
  //then they will handle it
    if (responsibility == "Lights") {
      console.log("The lights are now being handled by ", this.name);
      return;
    }
    //otherwise, pass it to the next component.
    return super.handle(responsibility);
  }
}

//second component: Handle the sound management of the event:
class SoundEngineerLead extends Leader {
  constructor(name) {
    super("Sound management", name);
  }
  handle(responsibility) {
  //if 'SoundEngineerLead' gets the responsibility to handle sounds,
  // they will handle it
    if (responsibility == "Sound") {
      console.log("The sound stage is now being handled by ", this.name);
      return;
    }
    //otherwise, forward this request down the chain:
    return super.handle(responsibility);
  }
}
//create two instances to handle the lighting and sounds of an event:
const minji = new LightsEngineerLead("Minji");
const danielle = new SoundEngineerLead("Danielle");
//set 'danielle' to be the next handler component in the chain.
minji.setNext(danielle);
//ask Minji to handle the Sound and Lights:
//since Minji can't handle Sound Management, 
// we expect this request to be forwarded 
minji.handle("Sound");
//Minji can handle Lights, so we expect it to be processed
minji.handle("Lights");

In the above code, we’ve modeled a situation at a music concert. Here, we want different people to handle different responsibilities. If a person cannot handle a certain task, it’s delegated to the next person in the list.

Initially, we declared a Leader base class with two properties:

  • responsibility — the kind of task the leader can handle
  • name — the name of the handler

Additionally, each Leader will have two functions:

  • setNext: As the name suggests, this function will add a Leader to the responsibility chain
  • handle: The function will check if the current Leader can process a certain responsibility; otherwise, it will forward that responsibility to the next person via the setNext method

Next, we created two child classes called LightsEngineerLead (responsible for lighting), and SoundEngineerLead (handles audio). Later on, we initialized two objects — minji and danielle. We used the setNext function to set danielle as the next handler in the responsibility chain.

Lastly, we asked minji to handle Sound and Lights.

When the code is run, we expect minji to attempt at processing our Sound and Light responsibilities. Since minji is not an audio engineer, it should hand over Sound to a capable handler. In this case, it is danielle: JavaScript design patterns guide

Strategy

The strategy method lets you define a collection of algorithms and swap between them during runtime. This pattern is useful for navigation apps. These apps can leverage this pattern to switch between routes for different user types (cycling, driving, or running):

This code block demonstrates the strategy design pattern in JavaScript code:

//situation: Build a calculator app that executes an operation between 2 numbers.
//depending on the user input, change between division and modulus operations

class CalculationStrategy {
  performExecution(a, b) {}
}
//create an algorithm for division
class DivisionStrategy extends CalculationStrategy {
  performExecution(a, b) {
    return a / b;
  }
}
//create another algorithm for performing modulus
class ModuloStrategy extends CalculationStrategy {
  performExecution(a, b) {
    return a % b;
  }
}
//this class will help the program switch between our algorithms:
class StrategyManager {
  setStrategy(strategy) {
    this.strategy = strategy;
  }
  executeStrategy(a, b) {
    return this.strategy.performExecution(a, b);
  }
}

const moduloOperation = new ModuloStrategy();
const divisionOp = new DivisionStrategy();
const strategyManager = new StrategyManager();
//use the division algorithm to divide two numbers:
strategyManager.setStrategy(divisionOp);
var result = strategyManager.executeStrategy(20, 4);
console.log("Result is: ", result);
//switch to the modulus strategy to perform modulus:
strategyManager.setStrategy(moduloOperation);
result = strategyManager.executeStrategy(20, 4);
console.log("Result of modulo is ", result);

Here’s what we did in the above block:

  • First we created a base CalculationStrategy abstract class which will process two numbers — a and b
  • We then defined two child classes — DivisionStrategy and ModuloStrategy. These two classes consist of division and modulo algorithms and return the output
  • Next, we declared a StrategyManager class which will let the program alternate between different algorithms
  • In the end, we used our DivisionStrategy and ModuloStrategy algorithms to process two numbers and return its output. To switch between these strategies, the strategyManager instance was used

When we execute this program, the expected output is strategyManager first using DivisionStrategy to divide two numbers and then switching to ModuloStrategy to return the modulo of those inputs: JavaScript design patterns guide

Conclusion

In this article, we learned about what design patterns are, and why they are useful in the software development industry. Furthermore, we also learned about different categories of JavaScript design patterns and implemented them in code.


LogRocket: Debug JavaScript errors more easily by understanding the context

Debugging code is always a tedious task. But the more you understand your errors, the easier it is to fix them.

LogRocket allows you to understand these errors in new and unique ways. Our frontend monitoring solution tracks user engagement with your JavaScript frontends to give you the ability to see exactly what the user did that led to an error.

JavaScript design patterns guide

LogRocket records console logs, page load times, stack traces, slow network requests/responses with headers bodies, browser metadata, and custom logs. Understanding the impact of your JavaScript code will never be easier!

Try it for free.

版本声明 本文转载于:https://dev.to/logrocket/javascript-design-patterns-guide-3p8k?1如有侵犯,请联系[email protected]删除
最新教程 更多>
  • Java字符串非空且非null的有效检查方法
    Java字符串非空且非null的有效检查方法
    检查字符串是否不是null而不是空的 if(str!= null && str.isementy())二手: if(str!= null && str.length()== 0) option 3:trim()。isement(Isement() trim whitespace whitesp...
    编程 发布于2025-05-15
  • 如何在Java字符串中有效替换多个子字符串?
    如何在Java字符串中有效替换多个子字符串?
    在java 中有效地替换多个substring,需要在需要替换一个字符串中的多个substring的情况下,很容易求助于重复应用字符串的刺激力量。 However, this can be inefficient for large strings or when working with nu...
    编程 发布于2025-05-15
  • PHP阵列键值异常:了解07和08的好奇情况
    PHP阵列键值异常:了解07和08的好奇情况
    PHP数组键值问题,使用07&08 在给定数月的数组中,键值07和08呈现令人困惑的行为时,就会出现一个不寻常的问题。运行print_r($月份)返回意外结果:键“ 07”丢失,而键“ 08”分配给了9月的值。此问题源于PHP对领先零的解释。当一个数字带有0(例如07或08)的前缀时,PHP将...
    编程 发布于2025-05-15
  • Java中假唤醒真的会发生吗?
    Java中假唤醒真的会发生吗?
    在Java中的浪费唤醒:真实性或神话?在Java同步中伪装唤醒的概念已经是讨论的主题。尽管存在这种行为的潜力,但问题仍然存在:它们实际上是在实践中发生的吗? Linux的唤醒机制根据Wikipedia关于伪造唤醒的文章,linux实现了pthread_cond_wait()功能的Linux实现,利用...
    编程 发布于2025-05-15
  • 用户本地时间格式及时区偏移显示指南
    用户本地时间格式及时区偏移显示指南
    在用户的语言环境格式中显示日期/时间,并使用时间偏移在向最终用户展示日期和时间时,以其localzone and格式显示它们至关重要。这确保了不同地理位置的清晰度和无缝用户体验。以下是使用JavaScript实现此目的的方法。方法:推荐方法是处理客户端的Javascript中的日期/时间格式化和时...
    编程 发布于2025-05-15
  • 如何使用组在MySQL中旋转数据?
    如何使用组在MySQL中旋转数据?
    在关系数据库中使用mySQL组使用mySQL组进行查询结果,在关系数据库中使用MySQL组,转移数据的数据是指重新排列的行和列的重排以增强数据可视化。在这里,我们面对一个共同的挑战:使用组的组将数据从基于行的基于列的转换为基于列。 Let's consider the following ...
    编程 发布于2025-05-15
  • Java为何无法创建泛型数组?
    Java为何无法创建泛型数组?
    通用阵列创建错误 arrayList [2]; JAVA报告了“通用数组创建”错误。为什么不允许这样做?答案:Create an Auxiliary Class:public static ArrayList<myObject>[] a = new ArrayList<myO...
    编程 发布于2025-05-15
  • 解决Spring Security 4.1及以上版本CORS问题指南
    解决Spring Security 4.1及以上版本CORS问题指南
    弹簧安全性cors filter:故障排除常见问题 在将Spring Security集成到现有项目中时,您可能会遇到与CORS相关的错误,如果像“访问Control-allo-allow-Origin”之类的标头,则无法设置在响应中。为了解决此问题,您可以实现自定义过滤器,例如代码段中的MyFi...
    编程 发布于2025-05-15
  • C++中如何将独占指针作为函数或构造函数参数传递?
    C++中如何将独占指针作为函数或构造函数参数传递?
    在构造函数和函数中将唯一的指数管理为参数 unique pointers( unique_ptr [2启示。通过值: base(std :: simelor_ptr n) :next(std :: move(n)){} 此方法将唯一指针的所有权转移到函数/对象。指针的内容被移至功能中,在操作...
    编程 发布于2025-05-15
  • 哪种在JavaScript中声明多个变量的方法更可维护?
    哪种在JavaScript中声明多个变量的方法更可维护?
    在JavaScript中声明多个变量:探索两个方法在JavaScript中,开发人员经常遇到需要声明多个变量的需要。对此的两种常见方法是:在单独的行上声明每个变量: 当涉及性能时,这两种方法本质上都是等效的。但是,可维护性可能会有所不同。 第一个方法被认为更易于维护。每个声明都是其自己的语句,使其...
    编程 发布于2025-05-15
  • 如何在Java中正确显示“ DD/MM/YYYY HH:MM:SS.SS”格式的当前日期和时间?
    如何在Java中正确显示“ DD/MM/YYYY HH:MM:SS.SS”格式的当前日期和时间?
    如何在“ dd/mm/yyyy hh:mm:mm:ss.ss”格式“ gormat 解决方案:的,请访问量很大,并应为procectiquiestate的,并在整个代码上正确格式不多: java.text.simpledateformat; 导入java.util.calendar; 导入java...
    编程 发布于2025-05-15
  • 在PHP中如何高效检测空数组?
    在PHP中如何高效检测空数组?
    在PHP 中检查一个空数组可以通过各种方法在PHP中确定一个空数组。如果需要验证任何数组元素的存在,则PHP的松散键入允许对数组本身进行直接评估:一种更严格的方法涉及使用count()函数: if(count(count($ playerList)=== 0){ //列表为空。 } 对...
    编程 发布于2025-05-15
  • 将图片浮动到底部右侧并环绕文字的技巧
    将图片浮动到底部右侧并环绕文字的技巧
    在Web设计中围绕在Web设计中,有时可以将图像浮动到页面右下角,从而使文本围绕它缠绕。这可以在有效地展示图像的同时创建一个吸引人的视觉效果。 css位置在右下角,使用css float and clear properties: img { 浮点:对; ...
    编程 发布于2025-05-15
  • 如何简化PHP中的JSON解析以获取多维阵列?
    如何简化PHP中的JSON解析以获取多维阵列?
    php 试图在PHP中解析JSON数据的JSON可能具有挑战性,尤其是在处理多维数组时。 To simplify the process, it's recommended to parse the JSON as an array rather than an object.To do...
    编程 发布于2025-05-15

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3