”工欲善其事,必先利其器。“—孔子《论语.录灵公》
首页 > 游戏 > Google DeepMind 用于 3D 虚拟环境的通用 AI 代理“SIMA”是什么? [CEDEC 2024]

Google DeepMind 用于 3D 虚拟环境的通用 AI 代理“SIMA”是什么? [CEDEC 2024]

发布于2024-11-01
浏览:963

 2024年8月21日,ゲーム開発者向けカンファレンス「CEDEC 2024」で,セッション「SIMA: Developing General AI Agents with Video Games/SIMA:ビデオゲームを用いた汎用型AIエージェントの開発」が行われた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 このセッションでは,Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」(Scalable Instructable Multiworld Agent)の概要や,ゲームを用いたトレーニング方法,研究から得られた学びと課題,そして今後のプロジェクトの方向性などについて,同社のTechnology Strategy/AI R&D Data Strategy部門のリーダーを務めるアレクサンドル・ムファレク氏が紹介した。


Google DeepMindと,そのゲームDNA


 ムファレク氏は最初に,Google DeepMindのミッションを「人類に利益をもたらす責任あるAIを構築すること」,つまりAGI(汎用人工知能)を開発し,それが現実世界に存在する問題の安全な解決に役立つようにすることだと説明し,これまで15年近く研究を続けてきたことを紹介した。
 最初はボードゲームやAtari用のシンプルなゲームの研究から始め,やがて神経科学と脳の働きに関する理解からインスピレーションを得て,強化学習アルゴリズムの開発を手がけるようになったという。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 さらにそれらのプロジェクトから得た知識を応用して研究を進めた結果,同社のAIモデルである「AlphaProof」「AlphaGeometry 2」を組み合わせることにより,2024年に開催された国際数学オリンピックにおける銀メダル水準の能力に到達したとのこと。
 そうした成果が,Googleの生成AI「Gemini」にも活用されていることも言及された。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 SIMAの研究にゲームを用いたのは,ムファレク氏自身やGoogle DeepMindのCEOを務めるDemis Hassabis氏を筆頭に,メンバーの大半が元ゲーム開発者だからだという。氏は「私達のDNAにはゲームが組み込まれている」と表現。またSIMAの研究とゲーム開発には,人々が考えている以上に共通点があるという。

 ムファレク氏は研究およびゲーム開発の進め方を以下のように説明した。すなわち,「仮説を立てて試行錯誤していく」と,やがて「大きな可能性を秘めた重要なピースを発見」する。しかし,「そのピースはある時点から機能しなくなり,なぜそうなったのか,もともと機能していた理由すら分からない状態に陥る」こととなる。そこから「うまくいかないすべての方法の発見」という長く反復的で厳しいプロセスに入っていくが,多くの忍耐とリソース,そして最初に立てた仮説への信頼と粘り強さがあれば,解決策が見つかるとのこと。そこからすべてが加速し,うまく噛み合ってまとまっていくという。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]


ゲームを用いたAI研究の歴史


 ムファレク氏は,ゲームが長きにわたってAI研究の進歩に貢献してきており,これからも研究を推進する原動力であり続けると話す。具体的にゲームは,AI研究に対して「対話して学習できるリッチで動的かつ複雑な環境」「スケーラブルで再現可能な実験」「管理された安全なテスト」を提供するとのこと。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 対話して学習できるリッチで動的かつ複雑な環境に関しては,仮想空間における移動パズルの解決,対戦相手に対する戦略の立案,変化する状況への適応などゲームで提示される課題が,現実世界の多様な状況に適応できるAIモデルの高度な問題解決スキルと意思決定能力を開発するのに役立つとの説明がなされた。

 スケーラブルで再現可能な実験に関しては,研究者がゲーム環境のインスタンスを簡単に作成し,多数のシミュレーションを同時に実行できて,それらから収集できる膨大な量のデータを用いてAIモデルをトレーニングし評価できることが挙げられた。加えて実験を一貫して複製できるため,研究結果の信頼性と妥当性が保障されるとのことだ。

 管理された安全なテストに関しては,仮想空間におけるさまざまな状況でAIモデルのパフォーマンスを評価することにより,潜在的な欠陥や制限を特定し,リアル環境でのテストに伴うリスクなしにアルゴリズムを改良できることが示された。これはとくに,エラーが深刻な結果をもたらす可能性のある自動運転や医療診断などのアプリにとって重要だという。

 強化学習およびディープラーニングが飛躍的に向上した2010年から2024年までの間に,ゲームによってAI研究が実際に進歩した事例も示された。2010年代前半には,Google DeepMindがAtari向けゲームと「DQN」(Deep Q-Network)を用いて,アルゴリズムの開発にチャレンジ。その結果,50タイトル以上のAtari向けゲームのプレイにて,超人的なパフォーマンスを発揮するアルゴリズムが完成した。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 2010年代中盤から後半にかけては,Microsoftが「Minecraft」を用いたAI訓練プロジェクト「Project Malmo」を展開。またOpenAIのAI学習プラットフォーム「Universe」は非常に汎用的なUIを備えていたため,ゲームを研究用にスケールアップして用いることが可能となった。

 また2020年代後半には,「Dota 2」用のAIシステム「OpenAI Five」が登場したり,DeepMindが開発したAIエージェント「AlphaStar」「StarCraft II」にてトッププレイヤーに勝利したりと,複雑なゲームにおいてもAIが活用されるようになっていった。ムファレク氏はこの時期について,カスタマイズされたアクションスペースを備える単一の環境にフォーカスし,ゲームのソースコードを変えたり,AIエージェントに特殊なAPIを実装したりしてカスタマイズした研究用のプラットフォームを作っていたと説明した。

 そして,2017年にGoogleが発表した機械学習モデル「Transformer」により,AIの汎用性が拡大され,大規模言語モデル(LLM)を用いた対話文章の要約や詩の執筆,データ分析などがチャットボットを介して可能となった。さらなる汎用化により,画像や音声,映像もAIによって生成可能になっていった。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 しかしムファレク氏は,そうした大規模AIモデルの限界を指摘する。つまり大規模AIモデルには身体性がないため,あくまでもデジタル領域内のものであり,物理的な領域では動作できない。そのためAIを物理的な領域で活用するには,ソフトバンクの「Pepper」やWaymoの自動運転車などのように,物理的なセンサーなどを介して身体性を持たせる必要が生ずるのである。


AI研究の次なるチャプター:SIMA


 ムファレク氏によると,上記のAIモデルの限界という課題を乗り越えるべく,DeepMindではSIMAの研究を進めたという。その目標は「言語によって条件付けられるAIエージェントを開発すること」で,つまり自律的にゲームをプレイするだけでなく,人間が自然言語を使って「何をしてほしいか」を伝えることにより,それを実行できるAIエージェントの実現を目指したとのこと。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 そうした目標を実現するために立てられた仮説は,「ある1つの環境でAIエージェントが何かを学習し,そのスキルを使って別の環境で何かができるようになれば,AIの汎用化が進む」というものだった。すなわちゲーム1タイトルごとに専用のAIエージェントを用意するのではなく,人間が新しいゲームに触れたとき,キャラクターやカメラなどの操作をそれまでプレイしてきたゲームから引き継げるようなことを1つのAIエージェントで実現させるというわけである。

 そのためにDeepMindは,いくつかのゲーム企業と提携してAIエージェントの学習用ポートフォリオを作成したという。具体的には「No Man's Sky」「Valheim」「Teardown」「Goat Simulator」などの人間によるゲームプレイを録画してAIエージェントに学習させたという。さらにテキストベースで指示を与えることにより,SIMAを実現できたそうだ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]


SIMAのトレーニング


 SIMAの学習パイプラインを,どのように構築していったかについても紹介がなされた。ムファレク氏によると最初にゲームと研究環境のオンボーディングを行うことにより,ソースコードへのアクセスや特別なAPIがなくとも,SIMAは人間と同じようにゲームをプレイできるようになるそうだ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 またゲームと研究環境のオンボーディングは,そのゲームの開発者の協力のもとで行うという。これは,そのゲームおよびSIMAプロジェクトで使うデータをどのように扱うのかなどについて,責任の所在を明確にするためである。

 ムファレク氏によると,SIMAプロジェクトには多様かつ非暴力的な学習ポートフォリオが必要だったとのこと。そのため,視覚的に自然なもの,工業的なもの,現実的なもの,SF的なもの,あるいは一人称視点,三人称視点といったさまざまなゲームタイトルを選出。また,複雑なメカニズムを介してSIMAがさまざまな行動を取れるよう,オープンワールドやサンドボックスの要素も採り入れたという。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 SIMAのインタフェースには汎用的なものを採用しているが,それは汎用的なAIエージェントを実現するためだったという。SIMAは最初に人間から自然言語で記されたテキストで目標や指示を受け取り,それをリアルタイムで認識する。そして人間同様に,コントローラやキーボード&マウスを使ってゲームをプレイしていく。
 ムファレク氏は,このような汎用インタフェースを使うことにより,カスタマイズすることなく,どんなゲームにもSIMAを組み込めると説明した。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 また,SIMAの学習データの作成は,2つの手法が採られた。1つは人間1人がゲームをプレイし,その映像を観て要所要所の指示などを自然言語で行うアノテーションをしていくというもの。2つめは,2人一組で行うもので,1人が自然言語で指示を与え,もう1人がそれに従うというプレイ映像を撮影し,さらにアノテーションを付けるというものだ。
 これにキーボード&マウスなどの操作データを加えたものが,SIMAのデータセットである。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 こうしたデータセットには,ゲーム中の「オブジェクトを作る」「クルマを運転する」といったSIMAのゲームプレイに必要となるスキルが含まれる。それらスキルをすべてのタイトル分集めた結果,全体では膨大な数になったというが,それでもSIMAプロジェクトにとっては十分すぎることはないという。
 ムファレク氏は,データやアノテーションが高品質であればあるほどSIMAの改善に役立つとし,今後もそうした努力を継続していくと語った。

 データセットの準備ができたら,いよいよSIMAの学習トレーニングがスタートする。ここで使うのが,人間のプレイを真似して学習させる「条件付き行動クローニング」だ。
 その中核となるのは事前学習モデルをサポートするアーキテクチャだが,それを開発した時点ではまだGeminiが存在していなかったため,Classifier-Free Guidance(CFG)を用いて視覚入力よりも言語的な命令を優先するように学習させ,自然言語をうまく理解できるようにサポートしたことが明かされた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 SIMAが出した成果を評価するフェイズでは,さまざまなタスクにおけるパフォーマンスを測定するために,チャレンジセットを作成したとのこと。タスクには3つの要素があり,1つめはSIMAが行動を開始する「初期状態」,2つめはSIMAが従うべき「目標・指示」,3つめはタスクを達成できたか否かを判断する「成功基準」だ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 またSIMAは,プログラム的にタスクが正常に完了したかどうかを判断する「Ground Truth」,画面上のテキストの変化によりどんな行動を取ったかをフィードバックする「光学式文字認識(OCR)」,そして人間が映像を確認し,タスクが正常に完了したかを確認する「人間による評価」の3つの観点から評価されることも紹介された。


SIMA初期の研究結果,そしてこのアプローチの制約


 プロジェクト初期の研究結果から,SIMAはさまざまなゲームで一般的に実行できるタスク,たとえば「前に進む」「メニューを開く」といった行動を完了できることが判明した。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 また,ゲームごとに異なる意味になる可能性のあるタスク,例えば「No Man's Sky」における宇宙船の離陸や,「Teardown」におけるボートの操縦といった行動なども,うまく完了できた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 その一方,各ゲーム固有のタスクを完了させることができたか否かに関しては,別途用意した3つの方法で評価したとのこと。
 1つは単独のゲームのデータを学習させ,同じ環境で評価した「Specialist」で,これを100%のパフォーマンスとして評価のベースラインとする。
 2つめは,10タイトルのゲームのデータを学習させ,そののちいずれか1つのゲームの環境でテストをして評価する「SIMA」である。
 そして3つめが,10タイトルのうち9タイトルのデータを学習させ,残り1タイトルのゲームの環境でテストして評価する「Zero-Shot」だ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 その結果,SIMAは10タイトルすべてを学習させたときはSpecialistよりも高いパフォーマンスを,またZero-ShotでもSpecialistに近いパフォーマンスをそれぞれ発揮したという。
 すなわち,「ある1つの環境でAIエージェントが何かを学習し,そのスキルを使って別の環境で何かができるようになる」ことが確認できたため,ムファレク氏は非常に満足したのだそうだ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 しかしこのプロジェクトの目標は,「言語によって条件付けられるAIエージェントを開発すること」である。そこで自然言語によるアノテーションを外して学習を行い,テストしたところ,SIMAのパフォーマンスは著しく低下したという。
 そこで初めて,「単一のエージェントを多数の大規模な環境でトレーニングすると学習が転移し,汎化が行われる」という仮説が証明されたのである。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

各タイトルにおけるSIMAのパフォーマンスも示された。ムファレク氏によるとタイトルごとの汎化の違いは,タスク実行に必要な固有の知識量の違いにあるとのこと
Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

SIMAにCFGを使った指示を加えるとそうでない場合よりも高いパフォーマンスが得られる。しかし特定の閾値を超えると,逆にパフォーマンスが落ちるそうだ
Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 ムファレク氏は以上の結果を踏まえて,「SIMAは本当に素晴らしい成功を収めた」としつつも,「完全とはほど遠い」と語る。それはタスクの完了率が環境に大きく左右されるからであり,人間のプレイにはまったくおよばないからである。
 しかし氏は,だからこそこれからのSIMAの研究意欲を駆り立てられると話していた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]
Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]


今後の展開


 最後に,ムファレク氏はSIMAプロジェクトの今後の展開を示した。それは次世代のシミュレーションベースによるAIエージェント研究になるという。何年もかけて行ってきたゲームによるAI研究の基盤であり,まだまだやるべきことはたくさんあるそうだ。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 これまではAIエージェントのパフォーマンスを優れたものにするための学習を研究してきたが,たとえば「StarCraft II」のアップデートにより,AlphaStarのパフォーマンスは低下している。
 ムファレク氏は「ゲームがアップデートするたび,AIエージェントに再学習させるのは現実的ではない」とし,SIMAのさらなる汎用化によって,ゲームに新たなフィーチャーが入ってもAIエージェントが優れたパフォーマンスを出せると語った。

 またSIMAは「焚き木を集める」「その焚き木を火にくべる」といった短時間で完了できるタスクは得意だが,「家を建てる」のようなプランや複数のステップ,推論が必要なタスクは必ずしもそうではないという。
 しかし今は,GeminiがSIMAの強力なサポートとなり得るそうで,例としてGeminiがディレクターとなり,「家を建てる」という長時間かかるタスクを短時間のタスクに分割してSIMAに渡すといったことが挙げられた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

 ムファレク氏は,SIMAプロジェクトはとてもエキサイティングで素晴らしい汎用性が期待できる半面,まだ完全な汎用型のAIエージェントにはなっていないとあらためて現状を語り,「もう少しのイノベーションで,どんなタスクも実行できるものになるかもしれない。そうなれば,さらにその先の展開も可能になる」と展望を語っていた。

Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]
Google DeepMindの3D仮想環境向け汎用型AIエージェント「SIMA」とは?[CEDEC 2024]

版本声明 本文转载于:https://www.4gamer.net/games/999/G999905/20240821086/如有侵犯,请联系[email protected]删除
最新教程 更多>
  • 最后生还者2季首改动保护艾比演员
    最后生还者2季首改动保护艾比演员
    我已经等待了多年,以了解在HBO上如何适应[的非线性事件,这是我们的最后一部分第2部分,该系列的游戏是基于的。季节开始时,跳跃的情况发生了巨大的变化。 短暂返回了第一个赛季的关键结尾对话后,我们看到了长颈鹿的照片。这立即将我们返回盐湖城,盐湖城是乔尔(Joel)屠杀了萤火虫以保持艾莉(Ellie)活...
    游戏 发布于2025-05-03
  • Delta Force弹药与护甲系统详解
    Delta Force弹药与护甲系统详解
    与传统的FPS游戏不同,提取射手具有更高级的装甲和弹药伤害系统。 The Operations mode in Delta Force is no different, though their version is somewhat simplified compared to a game li...
    游戏 发布于2025-05-03
  • 神秘轮盘的诡异冒险:Split Fiction
    神秘轮盘的诡异冒险:Split Fiction
    离开齐天大圣的领域后,你会偶然发现一个奇怪的小角落。那里有一台吐出香蕉的老虎机(为什么不呢?),还有一个看起来很重要的轮盘……但其实什么都不是。 你可能会认为这个轮盘隐藏着什么秘密谜题或游戏机制。也许正确地旋转它可以解锁一条隐藏的路径,或者也许落在正确的数字上会给你奖励。不。它什么也不做。 继续,...
    游戏 发布于2025-05-03
  • Pet Simulator 99 VIP福利详解
    Pet Simulator 99 VIP福利详解
    许多Roblox游戏都提供购买游戏通行证,而PET Simulator 99也不例外。 VIP游戏通行证的价格为400 Robux,有望带来许多好处和奖励。但是您到底得到了什么,这是一项值得投资的? 本指南分解了宠物模拟器99 VIP游戏通行证的内容。 [2 从游戏中独家商店购买的VIP Pass...
    游戏 发布于2025-05-03
  • Smite 2解锁众神指南
    Smite 2解锁众神指南
    Smite 2 的众神并非唾手可得。想要扩充你的神明阵容,你需要付出努力——或者金钱。以下是如何解锁神明并打造你梦想阵容的方法。 在 Smite 2 中解锁神明的方法 创始者礼包:购买任何等级的创始者版本即可立即解锁所有神明,包括现有的和未来的。如果你不想费心磨练等级,这是最简单的方法。 神明代币...
    游戏 发布于2025-05-02
  • 如何在《Anime Last Stand》中获得传送门
    如何在《Anime Last Stand》中获得传送门
    动漫最后一站更新2引入门户 - 获取对掌握游戏至关重要的特殊单位的新方法。本指南说明了如何获取和利用这些门户。 [2 [2 获取门户的最有效方法是在噩梦难度下以无限模式征服老板。 每个老板击败都有10%的机会接收门户。 协助其他人完成门户网站也有机会赚钱。 虽然在故事模式下击败老板可能会产生门...
    游戏 发布于2025-05-02
  • 任天堂宣布《旷野之息》在Switch 2上无好消息
    任天堂宣布《旷野之息》在Switch 2上无好消息
    令人失望的消息:任天堂Switch 2版《塞尔达传说:旷野之息》或将缺失DLC内容 对于期待在任天堂Switch 2上完整体验《塞尔达传说:旷野之息》的玩家来说,任天堂似乎带来了一些坏消息。作为2017年Switch的首发游戏,《旷野之息》至今仍是该主机上最受欢迎的游戏之一。Switch 2版《旷野...
    游戏 发布于2025-05-02
  • 《流放之路2》战士职业攻略
    《流放之路2》战士职业攻略
    Path of Exile 2中的战士:近战格斗大师 战士是《流放之路2》中典型的近战格斗职业。一手持战锤,一手持大盾,战士化身为战场上的坦克,吸收伤害的同时,用强大的打击击溃敌人。 战士在攻防两方面都能专精,使其成为一个优秀的全能型职业。如果您想在《流放之路2》中扮演战士,以下内容将向您介绍该职业...
    游戏 发布于2025-05-02
  • 豪龙:夏威夷海盗黑帮财神神社兑换攻略
    豪龙:夏威夷海盗黑帮财神神社兑换攻略
    在“像龙:无限的财富”中,熟悉的Kamurocho吉祥物Kamulop带着他的财富交换店返回! 本指南详细介绍了如何解锁商店,找到纸质命运并利用商店的独特奖励。 [2 在檀香山中收集纸质命运,在其他地方无法解锁独家项目。 [2 [2 开始第二章后不久,访问bar的访问会触发过过场动画,引入了Kam...
    游戏 发布于2025-05-01
  • Mudborne:如何增加更多存储空间
    Mudborne:如何增加更多存储空间
    Mudborne的最初库存感觉很宽敞,但探索,繁殖青蛙和资源收集很快需要更多存储。 幸运的是,存在几种选择来扩大您的承载能力。虽然有些家具适合特定生物,但随着您的进展,许多存储解决方案都可以使用。 背包甚至可以很早就可以实现! [2 增加泥浆中的存储 [2 [2 您可能已经获得了青蛙和虫子家具...
    游戏 发布于2025-05-01
  • 模拟人生4狼人模式作弊码大全
    模拟人生4狼人模式作弊码大全
    The Sims 4 Werewolves rounds out the trilogy of occult-themed game packs, giving your Sims the ability to transform into a beastly, barely-humanoid ba...
    游戏 发布于2025-05-01
  • 怪物猎人荒野火石获取地点及攻略
    怪物猎人荒野火石获取地点及攻略
    Monster Hunter Wilds手工制作需要各种特殊的材料,而Firestones是您使用武器和装甲所需的首次。 但是,他们的位置并未明确标记。本指南解释了在哪里可以找到和有效地耕种木材。 在Monster Hunter Wild 是从位于油井盆地的采矿露头获得的。 它们是每个节点的...
    游戏 发布于2025-05-01
  • 王朝霸业起源终极解锁攻略及隐藏要素大全
    王朝霸业起源终极解锁攻略及隐藏要素大全
    《王朝无双:起源》通关后挑战:解锁吕布、赤兔马及更多精彩内容! 恭喜你战胜了《王朝无双:起源》的主线剧情!真正的乐趣才刚刚开始,游戏丰富的后期内容等你探索!从更具挑战性的关卡到隐藏解锁要素,这里将为你揭晓所有内容,并教你如何轻松应对,避免抓狂(以及肉包子短缺)。 后期游戏内容:有哪些新内容? 完成主...
    游戏 发布于2025-04-30
  • 苏丹游戏:13个新手必备攻略
    苏丹游戏:13个新手必备攻略
    掌握苏丹的游戏:生存的1001阿拉伯夜晚的指南 在苏丹的游戏中,您浏览了一个疯狂的独裁者的奸诈世界,努力通过日常挑战为生存而努力。 本指南提供了胜过苏丹并避免迅速而令人不快的结局的基本技巧。 5:31 核心挑战在于巧妙地导航道德上模棱两可的难题。您将面临对流血,盗窃和不忠的需求,同时保持微妙的平...
    游戏 发布于2025-04-30

免责声明: 提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发到邮箱:[email protected] 我们会第一时间内为您处理。

Copyright© 2022 湘ICP备2022001581号-3