」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 設計有效資料庫的終極指南(說真的,我們是認真的)

設計有效資料庫的終極指南(說真的,我們是認真的)

發佈於2024-11-08
瀏覽:512

Alright, you’ve got a shiny new project. Maybe it's a cutting-edge mobile app or a massive e-commerce platform. Whatever it is, behind all that glitz is a well-structured database holding everything together. If your database is a mess, your app will be too. But don’t worry — we're going to show you exactly how to design a database that fits your project like a glove.

No fluff, no weird analogies. Just practical, clear steps and some sprinkled-in humor to keep you from dozing off. Ready? Let’s get started.


1. The Thought Process: What Problem Are You Solving?

Before you even think about tables, rows, and foreign keys, take a step back and answer one crucial question:

What problem is your project solving, and what kind of data will it need to handle?

Your choice of database design should align with:

  • Data type: Is your data structured (e.g., user details, order history) or unstructured (e.g., images, free text)?
  • Volume of data: Will you be handling thousands of rows or billions?
  • Consistency vs. speed: Does your app need to guarantee data consistency (e.g., banking apps), or is speed and availability more critical (e.g., social media apps)?
  • Scalability: Can your database handle a sudden growth surge if your app blows up overnight?

Real-Life Connection:

For example, if you’re building a financial application, you’ll likely need a relational database because you require strict data integrity. Every transaction must balance to the last penny.

But, if you’re designing a social media platform where users post, comment, and like in real-time, a NoSQL database might be better. You prioritize speed and availability, even if some data isn’t immediately consistent.


2. Relational or NoSQL: Choosing the Right Type

Relational Databases (SQL) – The Traditional Banker

Relational databases use structured tables and relationships between them. If you’ve ever had to create an invoice, you know you need clear sections: Customer Info, Product List, and Total Price. That’s how relational databases think — they love order and relationships.

Use When:

  • Your data is well-structured, like user profiles, product details, transactions, or bookings.
  • Data integrity is critical.
  • You need complex queries and transactions (joins, aggregations, etc.).

Popular Relational DBs: MySQL, PostgreSQL, Oracle DB, Microsoft SQL Server

Example: E-Commerce Product Database

For an online store, you might have the following tables:

  • Users: Info about the shoppers.
  • Products: What you're selling.
  • Orders: Details of purchases made.
  • Order_Items: A breakdown of each product within an order.

This structure ensures you know exactly who bought what and can track inventory reliably.

NoSQL Databases – The Fast and Flexible Creative

NoSQL databases don’t like strict rules. Instead, they allow flexibility, storing data as documents, key-value pairs, or wide-column stores. They're designed for apps that need to scale quickly, handle unstructured data, and serve users without the rigid constraints of relational models.

Use When:

  • You expect massive data growth with unpredictable structure.
  • You need real-time speed and can sacrifice some consistency (temporarily).
  • You want to store unstructured or semi-structured data like logs, social media posts, or IoT data.

Popular NoSQL DBs: MongoDB, Cassandra, Couchbase, Redis

Example: Social Media App

In a social media app, posts, likes, comments, and user data can change quickly. Storing each post as a document (JSON) in MongoDB allows you to retrieve entire posts quickly, without needing complex joins. This structure is fast, scalable, and perfect for serving millions of users.


3. Breaking Down Your Data: Entities and Relationships

Here comes the fun part: defining your entities (tables) and relationships. Think of entities as the core building blocks of your data.

How Many Tables Should I Have?

Start by identifying the main entities your app needs to track. Break down the features:

  • Users: Logins, names, emails, addresses.
  • Products: Titles, descriptions, prices, stock levels.
  • Orders: Date, user info, total amount, etc.

Each entity becomes a table.

How Many Columns Should I Have?

This depends on the specific attributes of each entity. Only include the relevant fields for each entity to avoid bloating your database. A user might have a name, email, and hashed password, but you don’t need to store every possible detail (e.g., their entire purchase history) directly in the Users table.

Tip: Keep it atomic — if a field can be broken down into smaller parts (e.g., address into street, city, state), do it.


4. Relationships Between Tables: The Backbone of Structure

When designing relationships, it’s crucial to know how the entities interact.

The Ultimate Guide to Designing a Database That Works (Seriously, We Mean It)

  1. One-to-One: One record in one table relates to exactly one in another.
    • Example: A user and their profile.
  2. One-to-Many: One record in a table relates to many in another.
    • Example: One customer can place many orders, but each order belongs to only one customer.
  3. Many-to-Many: Multiple records in one table relate to multiple records in another.
    • Example: Products and categories. A product can belong to many categories, and a category can contain many products. You’ll use a join table (e.g., Product_Category) to handle this relationship.

Code Example: Creating a One-to-Many Relationship in SQL

sql
Copy code
CREATE TABLE Users (
    user_id SERIAL PRIMARY KEY,
    name VARCHAR(100),
    email VARCHAR(100) UNIQUE
);

CREATE TABLE Orders (
    order_id SERIAL PRIMARY KEY,
    user_id INT REFERENCES Users(user_id),
    order_date TIMESTAMP,
    total_amount DECIMAL(10, 2)
);

This example shows how users can place multiple orders, but each order belongs to just one user.


5. Sizing and Scaling: Prepare for the Growth Surge

Once your structure is in place, you’ll want to ensure your database can handle the data flood when your project goes viral.

Estimating Data Volume

  • Size per row: Calculate how much space each row will take up based on column types (VARCHAR, INT, etc.).
  • Expected row count: Estimate how many records you’ll have in 1 year, 5 years, etc.

Example: If each Users row takes 500 bytes, and you expect 1 million users, your table will need about 500 MB of storage. But don’t forget to factor in indexes and growth!

Scaling Techniques:

  1. Vertical Scaling: Add more power (CPU, RAM) to your database server.
    • Drawback: It gets expensive and can only take you so far.
  2. Horizontal Scaling (Sharding): Split your data across multiple servers.
    • Example: You might shard by user_id, sending different ranges of users (e.g., 1-1,000,000 on one server, 1,000,001-2,000,000 on another).
    • Benefit: You can scale almost infinitely this way.
  3. Replication: Keep multiple copies of your data across servers. Use read replicas to handle read-heavy operations, reducing load on the primary server.

Diagram Spot: A visual diagram showing sharding and replication.


6. Ensuring Performance: Indexes, Query Optimization, and Caching

Indexing: The Secret Sauce for Speed

Think of indexes as the table of contents in a book. Instead of flipping through every page (row) to find the right data, the index lets you jump straight to it.

When to Use Indexes:

  • On primary keys (automatic).
  • On columns frequently used in WHERE clauses (e.g., email in the Users table).

But Beware: Indexes speed up reads but slow down writes. Don’t over-index!

Query Optimization: Smart Queries = Fast Results

Write efficient queries:

  • Avoid SELECT * unless you need every single column.
  • Limit the number of joins (they can be expensive, especially on large datasets).
  • Use caching for frequently accessed data.

7. Keeping Data Safe and Secure

Data Backups: Insurance for Your Database

Regular backups ensure that even if things go south, your data can be restored. Use incremental backups to save space.

Encryption: No Peeking!

Encrypt sensitive data, both at rest and in transit. Use algorithms like AES-256 to protect passwords, personal data, or financial info.


Conclusion: Now Go Forth and Build!

Designing a database might feel daunting, but with the right thought process, the right tools, and the steps outlined here, you’ll be able to structure data that’s scalable, secure, and perfectly suited to your project’s needs.

Take the time to understand the requirements, choose the right database, plan out relationships, and make your data work for you, not against you.


Ready to dive deeper into database architecture or need some specific advice? Leave a comment below or share your toughest challenges — let’s build something awesome together!

版本聲明 本文轉載於:https://dev.to/wittedtech-by-harshit/the-ultimate-guide-to-designing-a-database-that-works-seriously-we-mean-it-g80?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 如何使用Depimal.parse()中的指數表示法中的數字?
    如何使用Depimal.parse()中的指數表示法中的數字?
    在嘗試使用Decimal.parse(“ 1.2345e-02”中的指數符號表示法表示的字符串時,您可能會遇到錯誤。這是因為默認解析方法無法識別指數符號。 成功解析這樣的字符串,您需要明確指定它代表浮點數。您可以使用numbersTyles.Float樣式進行此操作,如下所示:[&& && && ...
    程式設計 發佈於2025-07-16
  • 為什麼使用Firefox後退按鈕時JavaScript執行停止?
    為什麼使用Firefox後退按鈕時JavaScript執行停止?
    導航歷史記錄問題:JavaScript使用Firefox Back Back 此行為是由瀏覽器緩存JavaScript資源引起的。要解決此問題並確保在後續頁面訪問中執行腳本,Firefox用戶應設置一個空功能。 警報'); }; alert('inline Alert')...
    程式設計 發佈於2025-07-16
  • Java是否允許多種返回類型:仔細研究通用方法?
    Java是否允許多種返回類型:仔細研究通用方法?
    在Java中的多個返回類型:一種誤解類型:在Java編程中揭示,在Java編程中,Peculiar方法簽名可能會出現,可能會出現,使開發人員陷入困境,使開發人員陷入困境。 getResult(string s); ,其中foo是自定義類。該方法聲明似乎擁有兩種返回類型:列表和E。但這確實是如此嗎...
    程式設計 發佈於2025-07-16
  • 如何在GO編譯器中自定義編譯優化?
    如何在GO編譯器中自定義編譯優化?
    在GO編譯器中自定義編譯優化 GO中的默認編譯過程遵循特定的優化策略。 However, users may need to adjust these optimizations for specific requirements.Optimization Control in Go Compi...
    程式設計 發佈於2025-07-16
  • Java中Lambda表達式為何需要“final”或“有效final”變量?
    Java中Lambda表達式為何需要“final”或“有效final”變量?
    Lambda Expressions Require "Final" or "Effectively Final" VariablesThe error message "Variable used in lambda expression shou...
    程式設計 發佈於2025-07-16
  • 為什麼我會收到MySQL錯誤#1089:錯誤的前綴密鑰?
    為什麼我會收到MySQL錯誤#1089:錯誤的前綴密鑰?
    mySQL錯誤#1089:錯誤的前綴鍵錯誤descript [#1089-不正確的前綴鍵在嘗試在表中創建一個prefix鍵時會出現。前綴鍵旨在索引字符串列的特定前綴長度長度,可以更快地搜索這些前綴。 了解prefix keys `這將在整個Movie_ID列上創建標準主鍵。主密鑰對於唯一識...
    程式設計 發佈於2025-07-16
  • Python環境變量的訪問與管理方法
    Python環境變量的訪問與管理方法
    Accessing Environment Variables in PythonTo access environment variables in Python, utilize the os.environ object, which represents a mapping of envir...
    程式設計 發佈於2025-07-16
  • 如何使用Java.net.urlConnection和Multipart/form-data編碼使用其他參數上傳文件?
    如何使用Java.net.urlConnection和Multipart/form-data編碼使用其他參數上傳文件?
    使用http request 上傳文件上傳到http server,同時也提交其他參數,java.net.net.urlconnection and Multipart/form-data Encoding是普遍的。 Here's a breakdown of the process:Mu...
    程式設計 發佈於2025-07-16
  • Android如何向PHP服務器發送POST數據?
    Android如何向PHP服務器發送POST數據?
    在android apache httpclient(已棄用) httpclient httpclient = new defaulthttpclient(); httppost httppost = new httppost(“ http://www.yoursite.com/script.p...
    程式設計 發佈於2025-07-16
  • Python元類工作原理及類創建與定制
    Python元類工作原理及類創建與定制
    python中的metaclasses是什麼? Metaclasses負責在Python中創建類對象。就像類創建實例一樣,元類也創建類。他們提供了對類創建過程的控制層,允許自定義類行為和屬性。 在Python中理解類作為對象的概念,類是描述用於創建新實例或對象的藍圖的對象。這意味著類本身是使用...
    程式設計 發佈於2025-07-16
  • 如何干淨地刪除匿名JavaScript事件處理程序?
    如何干淨地刪除匿名JavaScript事件處理程序?
    刪除匿名事件偵聽器將匿名事件偵聽器添加到元素中會提供靈活性和簡單性,但是當要刪除它們時,可以構成挑戰,而無需替換元素本身就可以替換一個問題。 element? element.addeventlistener(event,function(){/在這里工作/},false); 要解決此問題,請考...
    程式設計 發佈於2025-07-16
  • 在Python中如何創建動態變量?
    在Python中如何創建動態變量?
    在Python 中,動態創建變量的功能可以是一種強大的工具,尤其是在使用複雜的數據結構或算法時,Dynamic Variable Creation的動態變量創建。 Python提供了幾種創造性的方法來實現這一目標。 利用dictionaries 一種有效的方法是利用字典。字典允許您動態創建密鑰並...
    程式設計 發佈於2025-07-16
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探討了在運行時發現所有包裝類型(尤其是struntime go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) ...
    程式設計 發佈於2025-07-16
  • 在C#中如何高效重複字符串字符用於縮進?
    在C#中如何高效重複字符串字符用於縮進?
    在基於項目的深度下固定字符串時,重複一個字符串以進行凹痕,很方便有效地有一種有效的方法來返回字符串重複指定的次數的字符串。使用指定的次數。 constructor 這將返回字符串“ -----”。 字符串凹痕= new String(' - ',depth); console.W...
    程式設計 發佈於2025-07-16
  • Python中何時用"try"而非"if"檢測變量值?
    Python中何時用"try"而非"if"檢測變量值?
    使用“ try“ vs.” if”來測試python 在python中的變量值,在某些情況下,您可能需要在處理之前檢查變量是否具有值。在使用“如果”或“ try”構建體之間決定。 “ if” constructs result = function() 如果結果: 對於結果: ...
    程式設計 發佈於2025-07-16

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3