」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 加快 `shutil.copytree` 速度!

加快 `shutil.copytree` 速度!

發佈於2024-11-04
瀏覽:145

Speed up `shutil.copytree` !

关于加速shutil.copytree的讨论

写在这里

这是关于 的讨论,参见:https://discuss.python.org/t/speed-up-shutil-copytree/62078。如果您有任何想法,请发送给我!

背景

shutil 是 Python 中一个非常有用的模块。你可以在github中找到它:https://github.com/python/cpython/blob/master/Lib/shutil.py

shutil.copytree是将一个文件夹复制到另一个文件夹的函数。

在该函数中,调用_copytree函数进行复制。

_copytree 有什么作用?

  1. 忽略指定的文件/目录。
  2. 创建目标目录。
  3. 处理符号链接时复制文件或目录。
  4. 收集并最终提出遇到的错误(例如权限问题)。
  5. 将源目录的元数据复制到目标目录。

问题

_copytree当文件数量较多或文件大小较大时速度不是很快

在这里测试:

import os
import shutil

os.mkdir('test')
os.mkdir('test/source')

def bench_mark(func, *args):
    import time
    start = time.time()
    func(*args)
    end = time.time()
    print(f'{func.__name__} takes {end - start} seconds')
    return end - start

# write in 3000 files
def write_in_5000_files():
    for i in range(5000):
        with open(f'test/source/{i}.txt', 'w') as f:
            f.write('Hello World'   os.urandom(24).hex())
            f.close()

bench_mark(write_in_5000_files)

def copy():
    shutil.copytree('test/source', 'test/destination')

bench_mark(copy)

结果是:

write_in_5000_files 需要 4.084963083267212 秒
复制需要 27.12768316268921 秒

我做了什么

多线程

我使用多线程来加速复制过程。我将函数重命名为_copytree_single_threaded,添加一个新函数_copytree_multithreaded。这是copytree_multithreaded:

def _copytree_multithreaded(src, dst, symlinks=False, ignore=None, copy_function=shutil.copy2,
                            ignore_dangling_symlinks=False, dirs_exist_ok=False, max_workers=4):
    """Recursively copy a directory tree using multiple threads."""
    sys.audit("shutil.copytree", src, dst)

    # get the entries to copy
    entries = list(os.scandir(src))

    # make the pool
    with ThreadPoolExecutor(max_workers=max_workers) as executor:
        # submit the tasks
        futures = [
            executor.submit(_copytree_single_threaded, entries=[entry], src=src, dst=dst,
                            symlinks=symlinks, ignore=ignore, copy_function=copy_function,
                            ignore_dangling_symlinks=ignore_dangling_symlinks,
                            dirs_exist_ok=dirs_exist_ok)
            for entry in entries
        ]

        # wait for the tasks
        for future in as_completed(futures):
            try:
                future.result()
            except Exception as e:
                print(f"Failed to copy: {e}")
                raise

我添加了一个判断,选择是否使用多线程。

if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100*1024*1024:
        # multithreaded version
        return _copytree_multithreaded(src, dst, symlinks=symlinks, ignore=ignore,
                                        copy_function=copy_function,
                                        ignore_dangling_symlinks=ignore_dangling_symlinks,
                                        dirs_exist_ok=dirs_exist_ok)

else:
    # single threaded version
    return _copytree_single_threaded(entries=entries, src=src, dst=dst,
                                        symlinks=symlinks, ignore=ignore,
                                        copy_function=copy_function,
                                        ignore_dangling_symlinks=ignore_dangling_symlinks,
                                        dirs_exist_ok=dirs_exist_ok)

测试

我在源文件夹中写入了 50000 个文件。基准:

def bench_mark(func, *args):
    import time
    start = time.perf_counter()
    func(*args)
    end = time.perf_counter()
    print(f"{func.__name__} costs {end - start}s")

写入:

import os
os.mkdir("Test")
os.mkdir("Test/source")

# write in 50000 files
def write_in_file():
    for i in range(50000):
         with open(f"Test/source/{i}.txt", 'w') as f:
             f.write(f"{i}")
             f.close()

两个比较:

def copy1():
    import shutil
    shutil.copytree('test/source', 'test/destination1')

def copy2():
    import my_shutil
    my_shutil.copytree('test/source', 'test/destination2')

  • “my_shutil”是我修改后的shutil版本。

copy1 成本 173.04780609999943s
copy2 成本 155.81321870000102s

copy2 比 copy1 快很多。可以运行多次。

优点和缺点

使用多线程可以加快复制过程。但会增加内存占用。但我们不需要重写代码中的多线程。

异步

感谢“巴里·斯科特”。我会听从他/她的建议:

通过使用异步 I/O,您可能会以更少的开销获得相同的改进。

我写了这些代码:

import os
import shutil
import asyncio
from concurrent.futures import ThreadPoolExecutor
import time


# create directory
def create_target_directory(dst):
    os.makedirs(dst, exist_ok=True)

# copy 1 file
async def copy_file_async(src, dst):
    loop = asyncio.get_event_loop()
    await loop.run_in_executor(None, shutil.copy2, src, dst)

# copy directory
async def copy_directory_async(src, dst, symlinks=False, ignore=None, dirs_exist_ok=False):
    entries = os.scandir(src)
    create_target_directory(dst)

    tasks = []
    for entry in entries:
        src_path = entry.path
        dst_path = os.path.join(dst, entry.name)

        if entry.is_dir(follow_symlinks=not symlinks):
            tasks.append(copy_directory_async(src_path, dst_path, symlinks, ignore, dirs_exist_ok))
        else:
            tasks.append(copy_file_async(src_path, dst_path))

    await asyncio.gather(*tasks)
# choose copy method
def choose_copy_method(entries, src, dst, **kwargs):
    if len(entries) >= 100 or sum(os.path.getsize(entry.path) for entry in entries) >= 100 * 1024 * 1024:
        # async version
        asyncio.run(copy_directory_async(src, dst, **kwargs))
    else:
        # single thread version
        shutil.copytree(src, dst, **kwargs)
# test function
def bench_mark(func, *args):
    start = time.perf_counter()
    func(*args)
    end = time.perf_counter()
    print(f"{func.__name__} costs {end - start:.2f}s")

# write in 50000 files
def write_in_50000_files():
    for i in range(50000):
        with open(f"Test/source/{i}.txt", 'w') as f:
            f.write(f"{i}")

def main():
    os.makedirs('Test/source', exist_ok=True)
    write_in_50000_files()

    # 单线程复制
    def copy1():
        shutil.copytree('Test/source', 'Test/destination1')

    def copy2():
        shutil.copytree('Test/source', 'Test/destination2')

    # async
    def copy3():
        entries = list(os.scandir('Test/source'))
        choose_copy_method(entries, 'Test/source', 'Test/destination3')

    bench_mark(copy1)
    bench_mark(copy2)
    bench_mark(copy3)

    shutil.rmtree('Test')

if __name__ == "__main__":
    main()

输出:

copy1 花费 187.21s
copy2 花费 244.33s
copy3 花费 111.27s


可以看到异步版本比单线程版本更快。但单线程版本比多线程版本更快。 (可能是我的测试环境不太好,你可以尝试一下,把你的结果回复给我)

谢谢巴里·斯科特!

优点和缺点

异步是一个不错的选择。但没有一个解决方案是完美的。如果您发现问题,可以回复我。

结尾

这是我第一次在 python.org 上写讨论。如果有任何问题,请告诉我。谢谢。

我的Github:https://github.com/mengqinyuan
我的开发者:https://dev.to/mengqinyuan

版本聲明 本文轉載於:https://dev.to/mengqinyuan/add-multithreading-to-shutil--2lm1?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • Java數組中元素位置查找技巧
    Java數組中元素位置查找技巧
    在Java數組中檢索元素的位置 利用Java的反射API將數組轉換為列表中,允許您使用indexof方法。 (primitives)(鏈接到Mishax的解決方案) 用於排序陣列的數組此方法此方法返回元素的索引,如果發現了元素的索引,或一個負值,指示應放置元素的插入點。
    程式設計 發佈於2025-05-17
  • 如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    如何為PostgreSQL中的每個唯一標識符有效地檢索最後一行?
    postgresql:為每個唯一標識符在postgresql中提取最後一行,您可能需要遇到與數據集合中每個不同標識的信息相關的信息。考慮以下數據:[ 1 2014-02-01 kjkj 在數據集中的每個唯一ID中檢索最後一行的信息,您可以在操作員上使用Postgres的有效效率: id dat...
    程式設計 發佈於2025-05-17
  • 查找當前執行JavaScript的腳本元素方法
    查找當前執行JavaScript的腳本元素方法
    如何引用當前執行腳本的腳本元素在某些方案中理解問題在某些方案中,開發人員可能需要將其他腳本動態加載其他腳本。但是,如果Head Element尚未完全渲染,則使用document.getElementsbytagname('head')[0] .appendChild(v)的常規方...
    程式設計 發佈於2025-05-17
  • 大批
    大批
    [2 數組是對象,因此它們在JS中也具有方法。 切片(開始):在新數組中提取部分數組,而無需突變原始數組。 令ARR = ['a','b','c','d','e']; // USECASE:提取直到索引作...
    程式設計 發佈於2025-05-17
  • 您可以使用CSS在Chrome和Firefox中染色控制台輸出嗎?
    您可以使用CSS在Chrome和Firefox中染色控制台輸出嗎?
    在javascript console 中顯示顏色是可以使用chrome的控制台顯示彩色文本,例如紅色的redors,for for for for錯誤消息? 回答是的,可以使用CSS將顏色添加到Chrome和Firefox中的控制台顯示的消息(版本31或更高版本)中。要實現這一目標,請使用以下...
    程式設計 發佈於2025-05-17
  • 將圖片浮動到底部右側並環繞文字的技巧
    將圖片浮動到底部右側並環繞文字的技巧
    在Web設計中圍繞在Web設計中,有時可以將圖像浮動到頁面右下角,從而使文本圍繞它纏繞。這可以在有效地展示圖像的同時創建一個吸引人的視覺效果。 css位置在右下角,使用css float and clear properties: img { 浮點:對; ...
    程式設計 發佈於2025-05-17
  • 如何簡化PHP中的JSON解析以獲取多維陣列?
    如何簡化PHP中的JSON解析以獲取多維陣列?
    php 試圖在PHP中解析JSON數據的JSON可能具有挑戰性,尤其是在處理多維數組時。 To simplify the process, it's recommended to parse the JSON as an array rather than an object.To do...
    程式設計 發佈於2025-05-17
  • `console.log`顯示修改後對象值異常的原因
    `console.log`顯示修改後對象值異常的原因
    foo = [{id:1},{id:2},{id:3},{id:4},{id:id:5},],]; console.log('foo1',foo,foo.length); foo.splice(2,1); console.log('foo2', foo, foo....
    程式設計 發佈於2025-05-17
  • Python高效去除文本中HTML標籤方法
    Python高效去除文本中HTML標籤方法
    在Python中剝離HTML標籤,以獲取原始的文本表示 僅通過Python的MlStripper 來簡化剝離過程,Python Standard庫提供了一個專門的功能,MLSTREPERE,MLSTREPERIPLE,MLSTREPERE,MLSTREPERIPE,MLSTREPERCE,MLST...
    程式設計 發佈於2025-05-17
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探索了替代方法,探索了在Runruntime。 go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) 如果er...
    程式設計 發佈於2025-05-17
  • 如何從Google API中檢索最新的jQuery庫?
    如何從Google API中檢索最新的jQuery庫?
    從Google APIS 問題中提供的jQuery URL是版本1.2.6。對於檢索最新版本,以前有一種使用特定版本編號的替代方法,它是使用以下語法:獲取最新版本:未壓縮)While these legacy URLs still remain in use, it is recommended ...
    程式設計 發佈於2025-05-17
  • 如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    Red: How to Redirect Multiple User Types to Respective ActivitiesUnderstanding the ProblemIn a Firebase-based voting app with three distinct user type...
    程式設計 發佈於2025-05-17
  • Java中如何使用觀察者模式實現自定義事件?
    Java中如何使用觀察者模式實現自定義事件?
    在Java 中創建自定義事件的自定義事件在許多編程場景中都是無關緊要的,使組件能夠基於特定的觸發器相互通信。本文旨在解決以下內容:問題語句我們如何在Java中實現自定義事件以促進基於特定事件的對象之間的交互,定義了管理訂閱者的類界面。 以下代碼片段演示瞭如何使用觀察者模式創建自定義事件: args...
    程式設計 發佈於2025-05-17
  • 可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    [2这里: https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> { display:grid; grid-template-...
    程式設計 發佈於2025-05-17
  • 如何在Java的全屏獨家模式下處理用戶輸入?
    如何在Java的全屏獨家模式下處理用戶輸入?
    Handling User Input in Full Screen Exclusive Mode in JavaIntroductionWhen running a Java application in full screen exclusive mode, the usual event ha...
    程式設計 發佈於2025-05-17

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3