」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > 最佳化效能:為資料透視表選擇最佳資料來源

最佳化效能:為資料透視表選擇最佳資料來源

發佈於2024-11-08
瀏覽:629

Optimize Performance: Choose the Best Data Source for Pivot Table

TL;DR: Syncfusion Pivot Table connects to multiple data sources, making it a versatile tool for data analysis. Selecting the right data source is crucial for performance. This guide explores different options and offers tips on choosing the best one.

Syncfusion Pivot Table is a powerful tool for data analysis and visualization. One of its standout features is the ability to connect to various data sources, making it a versatile choice for businesses and developers. Choosing the right data source for your Pivot Table is crucial for ensuring optimal performance and usability.

Let’s explore the different data sources you can connect to Syncfusion Pivot Table, their benefits, and how to choose the one that best suits your needs.

Understanding Syncfusion Pivot Table

Before diving into data sources, it’s essential to understand what the Syncfusion Pivot Table is and how it works. The Syncfusion Pivot Table is a component for ASP.NET MVC, ASP.NET Core, TypeScript, JavaScript, Angular, React, Vue, and Blazor platforms. It allows you to create interactive tables for data analysis, offering features like data filtering, sorting, grouping, and aggregation.

Factors to consider when choosing a data source for Pivot Table

Let’s see some of the significant factors that need to be considered when choosing a data source for our Pivot Table:

Data volume and complexity

The size of your data can affect performance. Large datasets might require more powerful databases or optimized storage solutions. For example, JSON or CSV files might be sufficient for small to medium datasets. For larger datasets, consider using Relational and NoSQL databases or OLAP systems. OLAP systems provide the necessary capabilities for complex data analysis and multi-dimensional data. For more straightforward analysis, JSON or CSV files can be practical.

Performance requirements

Consider the performance requirements of your app. Databases generally offer better performance for large-scale data operations compared to file-based data sources. However, JSON and CSV files might suffice for quick and straightforward analysis.

Ease of integration

Evaluate how easily the data source can be integrated with Syncfusion Pivot Table. Relational databases and JSON/XML files typically have well-established integration methods, while some NoSQL databases and RESTful APIs might require additional configuration.

Real-time data access

If your app requires real-time data access, use RESTful APIs or databases with real-time capabilities. File-based data sources like Excel and CSV are static and require manual updates.

Security and compliance

Ensure your chosen data source complies with your organization’s security and privacy requirements. Databases often provide robust security features, whereas file-based data sources might require additional measures to secure sensitive information.

Best practices for choosing a data source for Pivot Table

Let’s see some of the best practices for choosing a data source for a Pivot Table:

Evaluate your use case

Understand your app’s specific needs and choose a data source that aligns with those needs. Consider the data type, required operations, and user expectations. Consider NoSQL databases for web apps that require high availability and scalability. Relational databases like SQL Servers are a good choice for traditional business apps that use structured data.

Test performance and scalability

Conduct performance testing to ensure the chosen data source can handle the expected load. Also, consider future scalability needs and choose a solution that can grow with your app.

Ensure data quality

Data quality is paramount for accurate analysis. Choose data sources that allow you to maintain high data quality standards, including validation and error checking.

Plan for data integration

Develop a clear plan for integrating your data source with Syncfusion Pivot Table. Consider using middleware or ETL (Extract, Transform, Load) tools to streamline the integration process. JSON and CSV data are convenient for quick setups and ease of use. Relational databases and OLAP systems require more setup and maintenance but offer greater capabilities.

How does the Syncfusion Pivot Table work with different data sources?

The flexible and robust data binding capabilities facilitate Syncfusion Pivot Table’s ability to work with various data sources. It supports multiple data sources, including:

  • JSON data: Ideal for small to medium datasets, JSON is lightweight and easy to work with.
  • OLAP (Online Analytical Processing): Suitable for large datasets and complex data analysis.
  • Relational databases: SQL databases like MySQL, SQL Server, and PostgreSQL provide robust data storage and querying capabilities.
  • NoSQL databases: NoSQL databases like MongoDB provide a flexible schema design for unstructured data.
  • Web Services: Web Services, such as RESTful APIs and OData services, are helpful for real-time data integration and dynamic updates.
  • CSV files: Simple for smaller datasets and quick setups.

JSON data

JSON (JavaScript Object Notation) is a lightweight data interchange format. Syncfusion Pivot Table can easily consume JSON data, which is particularly useful for web apps where data is often fetched in JSON format from APIs.

Advantages

  • Ease of use: JSON is easy to read, write, and parse, making it a popular choice for web apps.
  • Flexibility: JSON can handle various data structures, including nested objects and arrays.

  • Lightweight: JSON is compact, reducing the data transmitted over the network.

Considerations

  • Performance: Handling large datasets in JSON can be inefficient and slow.

  • Limited Scalability: JSON is not ideal for large or complex datasets.

When to use

  • Small to medium datasets.
  • Apps where ease of use and quick setup are priorities.

  • Prototyping and testing.

Here is a code example for integrating JSON data with our Pivot Table.

Binding JSON data via local

var localData = [
    { Product: 'Bike', Country: 'USA', Sales: 100 },
    { Product: 'Car', Country: 'Canada', Sales: 200 }
];

var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        dataSource: localData,
        rows: [{ name: 'Product' }],
        columns: [{ name: 'Country' }],
        values: [{ name: 'Sales' }],
        filters: []
    }
});
pivotTableObj.appendTo('#PivotTable');

Binding JSON data via remote (external) link

var pivotGridObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        url: 'https://cdn.syncfusion.com/data/sales-analysis.json',
        expandAll: false,
        rows: [
            { name: 'EnerType', caption: 'Energy Type' }
        ],
        columns: [
            { name: 'EneSource', caption: 'Energy Source' }
        ],
        values: [
            { name: 'PowUnits', caption: 'Units (GWh)' },
            { name: 'ProCost', caption: 'Cost (MM)' }
        ],
        filters: []
    }
});
pivotGridObj.appendTo('#PivotTable');

CSV files

Comma-separated values (CSV) files are a standard format for exporting and importing data. Syncfusion Pivot Table can parse CSV files and use them as a data source, making it convenient to analyze data from spreadsheets or other tabular data sources.

Advantages

  • Simplicity: Easy to create, read, and manipulate.
  • Portability: CSV files are widely supported and easily shareable.
  • Quick setup: Ideal for quick setups and small datasets.

Considerations

  • Performance: Not suitable for large datasets or complex queries.
  • Limited functionality: Lacks advanced features and data types.

When to use

  • Small datasets for quick analysis or prototyping.
  • Data migration or import/export scenarios.
  • Simple apps with minimal data manipulation needs.

Here is a code example for integrating CSV data with Pivot Table.

Binding CSV data via local

var csvdata =
  'Region,Country,Item Type,Sales Channel,Total Revenue,Total Cost,Total Profit\r\nMiddle East and North Africa,Libya,Cosmetics,Offline,3692591.20,2224085.18,1468506.02\r\nNorth America,Canada,Vegetables,Online,464953.08,274426.74,190526.34\r\nMiddle East and North Africa,Libya,Baby Food,Offline,387259.76,241840.14,145419.62\r\nAsia,Japan,Cereal,Offline,683335.40,389039.42,294295.98';
var pivotObj = new ej.pivotview.PivotView({
  dataSourceSettings: {
    dataSource: getCSVData(),
    type: 'CSV',
    expandAll: false,
    formatSettings: [
      { name: 'Total Cost', format: 'C0' },
      { name: 'Total Revenue', format: 'C0' },
      { name: 'Total Profit', format: 'C0' },
    ],
    drilledMembers: [{ name: 'Item Type', items: ['Baby Food'] }],
    rows: [{ name: 'Country' }, { name: 'Region' }],
    columns: [{ name: 'Sales Channel' }, { name: 'Item Type' }],
    values: [
      { name: 'Total Profit' },
      { name: 'Total Cost' },
      { name: 'Total Revenue' },
    ],
    filters: [],
  },
  height: 290,
  width: '100%',
});
pivotObj.appendTo('#PivotTable');
function getCSVData() {
  var dataSource = [];
  var jsonObject = csvdata.split(/\r?\n|\r/);
  for (var i = 0; i 



Binding CSV data via remote (external) link

var pivotObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
        url: 'https://bi.syncfusion.com/productservice/api/sales',
        type: 'CSV',
        expandAll: false,
        enableSorting: true,
        formatSettings: [{ name: 'Total Cost', format: 'C0' }, { name: 'Total Revenue', format: 'C0' }, { name: 'Total Profit', format: 'C0' }],
        drilledMembers: [{ name: 'Item Type', items: ['Baby Food'] }],
        rows: [
            { name: 'Region' },
            { name: 'Country' }
        ],
        columns: [
            { name: 'Item Type' },
            { name: 'Sales Channel' }
        ],
        values: [
            { name: 'Total Cost' },
            { name: 'Total Revenue' },
            { name: 'Total Profit' }
        ],
        filters: []
    },
    height: 300,
    width: '100%'
});
pivotObj.appendTo('#PivotTable');

OLAP (Online Analytical Processing) data

OLAP cubes allow for complex data analysis and are commonly used in business intelligence apps. Syncfusion Pivot Table supports OLAP data sources, enabling multi-dimensional data analysis with rich, hierarchical data structures. OLAP data sources often provide faster query responses due to pre-aggregated data.

Advantages

  • Performance: OLAP is designed for fast querying and data analysis, even with large datasets.
  • Complex analysis: Supports complex calculations, aggregations, and multi-dimensional data analysis.
  • Scalability: OLAP systems can handle massive datasets with ease.

Considerations

  • Complexity: Setting up and maintaining an OLAP system can be complex and require specialized knowledge.
  • Cost: OLAP solutions can be expensive to implement and maintain.

When to use

  • Large datasets with complex analysis requirements.
  • Business intelligence and data warehousing apps.
  • Scenarios requiring high performance and scalability.

Here is a code example for integrating the OLAP data with the Pivot Table.

var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
            catalog: 'Adventure Works DW 2008 SE',
            cube: 'Adventure Works',
            providerType: 'SSAS',
            enableSorting: true,
            url: 'https://bi.syncfusion.com/olap/msmdpump.dll',
            localeIdentifier: 1033,
            rows: [{ name: '[Customer].[Customer Geography]'],
            columns: [{ name: '[Product].[Product Categories]'},
                { name: '[Measures]'}],
            values: [{ name: '[Measures].[Customer Count]'},
                { name: '[Measures].[Internet Sales Amount]']
    }
});
pivotTableObj.appendTo('#PivotTable');

Relational databases

Relational databases are one of the most common data sources for our Pivot Table. They store data in tables, making it easy to retrieve and manipulate data using SQL queries. Popular relational databases include MySQL, PostgreSQL, SQL Server, and Oracle.

Advantages

  • Structured data: Data is organized in a tabular format, ideal for Pivot Tables.
  • Scalability: Suitable for handling large volumes of data.
  • ACID compliance: Ensures data integrity and consistency.

Considerations

  • Complexity: Requires knowledge of SQL for data retrieval.
  • Performance: This may require optimization for large datasets.

When to use

  • Medium to large datasets.
  • Apps requiring robust data storage and complex queries.
  • Scenarios where data integrity and relationships are essential.

NoSQL databases

NoSQL databases such as MongoDB offer a flexible schema and are designed to handle unstructured data, making them a good choice for certain types of data analysis.

Advantages

  • Flexibility: Schema-less design allows for easy modification of data structures.
  • Scalability: Excellent for handling large-scale, distributed data.

Considerations

  • Query complexity: Can be more complex to query than relational databases.
  • Consistency: May sacrifice consistency for availability and partition tolerance (CAP theorem).
  • Connectivity: We may require specific connectors or APIs for integration.

Web Services or remote data

Data can be fetched from remote servers using web services or APIs. Syncfusion Pivot Table can connect to remote data sources via RESTful services, making it ideal for apps that analyze data from various endpoints. It involves retrieving data from remote servers or databases.

Advantages

  • Real-time data: Enables real-time data integration and dynamic updates.
  • Scalability: Can handle large and distributed datasets.
  • Flexibility: Easily integrate with various services and APIs.

Considerations

  • Complexity: Requires developing and maintaining RESTful APIs.
  • Latency: Network latency can impact performance.

When to use

  • Apps needing real-time data updates.
  • Integrating data from multiple sources or external APIs.
  • Scenarios requiring high flexibility and scalability.

Here’s a code example for connecting an API service to our Pivot Table.

var data = new ej.data.DataManager({
    url: 'https://bi.syncfusion.com/northwindservice/api/orders',
    adaptor: new ej.data.WebApiAdaptor(),
    crossDomain: true,
  });
  data.defaultQuery = new ej.data.Query().take(8);

  var pivotTableObj = new ej.pivotview.PivotView({
    dataSourceSettings: {
      dataSource: data,
      expandAll: true,
      filters: [],
      columns: [{ name: 'ProductName' }],
      rows: [{ name: 'ShipCountry' }, { name: 'ShipCity' }],
      formatSettings: [{ name: 'UnitPrice', format: 'C0' }],
      values: [{ name: 'Quantity' }, { name: 'UnitPrice' }],
    },
    height: 350,
    width: '100%',
    gridSettings: { columnWidth: 120 },
  });
  pivotTableObj.appendTo('#PivotTable');

References

For more details, refer to the following references:

  • Connecting to PostgreSQL in Pivot Table
  • Connecting to Microsoft SQL Server in Pivot Table
  • Connecting to Oracle in Pivot Table
  • Connecting to Elasticsearch in Pivot Table
  • Connecting to Snowflake in Pivot Table
  • Server-Side Pivot Engine in Pivot Table

Conclusion

Thanks for reading! In this blog, we’ve explored the various options, benefits, and best practices for choosing the right data source for the Syncfusion Pivot Table, ensuring optimal performance and usability.

If you’re already a Syncfusion user, the latest version of Essential Studio is available on the License and Downloads page. We offer our new users a 30-day free trial to explore all our components’ features and capabilities.

If you need further assistance, contact us via our support forum, support portal, or feedback portal. We’re always here to help you!

Related blogs

  • Easily Group Data into Ranges in Web Applications Using Pivot Table
  • Optimize Memory Management in JavaScript Pivot Table: Best Practices and Tips
  • Easily Perform CRUD Actions in Blazor Pivot Table with SQL Database & Entity Framework
  • Efficient Report Management: Save and Load Reports in Vue Pivot Table with SQL Server and Node.js Express Server
版本聲明 本文轉載於:https://dev.to/syncfusion/optimize-performance-choose-the-best-data-source-for-pivot-table-3l0e?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 如何處理PHP文件系統功能中的UTF-8文件名?
    如何處理PHP文件系統功能中的UTF-8文件名?
    在PHP的Filesystem functions中處理UTF-8 FileNames 在使用PHP的MKDIR函數中含有UTF-8字符的文件很多flusf-8字符時,您可能會在Windows Explorer中遇到comploreer grounder grounder grounder gro...
    程式設計 發佈於2025-07-14
  • C++成員函數指針正確傳遞方法
    C++成員函數指針正確傳遞方法
    如何將成員函數置於c [&& && && && && && && && && && &&&&&&&&&&&&&&&&&&&&&&&華儀的函數時,在接受成員函數指針的函數時,要在函數上既要提供指針又可以提供指針和指針到函數的函數。需要具有一定簽名的功能指針。要通過成員函數,您需要同時提供對象指針(此...
    程式設計 發佈於2025-07-14
  • 編譯器報錯“usr/bin/ld: cannot find -l”解決方法
    編譯器報錯“usr/bin/ld: cannot find -l”解決方法
    錯誤:“ usr/bin/ld:找不到-l “ 此錯誤表明鏈接器在鏈接您的可執行文件時無法找到指定的庫。為了解決此問題,我們將深入研究如何指定庫路徑並將鏈接引導到正確位置的詳細信息。 添加庫搜索路徑的一個可能的原因是,此錯誤是您的makefile中缺少庫搜索路徑。要解決它,您可以在鏈接器命令中添...
    程式設計 發佈於2025-07-14
  • 如何檢查對像是否具有Python中的特定屬性?
    如何檢查對像是否具有Python中的特定屬性?
    方法來確定對象屬性存在尋求一種方法來驗證對像中特定屬性的存在。考慮以下示例,其中嘗試訪問不確定屬性會引起錯誤: >>> a = someClass() >>> A.property Trackback(最近的最新電話): 文件“ ”,第1行, attributeError:SomeClass實...
    程式設計 發佈於2025-07-14
  • C++20 Consteval函數中模板參數能否依賴於函數參數?
    C++20 Consteval函數中模板參數能否依賴於函數參數?
    [ consteval函數和模板參數依賴於函數參數在C 17中,模板參數不能依賴一個函數參數,因為編譯器仍然需要對非contexexpr futcoriations contim at contexpr function進行評估。 compile time。 C 20引入恆定函數,必須在編譯時進...
    程式設計 發佈於2025-07-14
  • Go語言如何動態發現導出包類型?
    Go語言如何動態發現導出包類型?
    與反射軟件包中的有限類型的發現能力相反,本文探討了在運行時發現所有包裝類型(尤其是struntime go import( “ FMT” “去/進口商” ) func main(){ pkg,err:= incorter.default()。導入(“ time”) ...
    程式設計 發佈於2025-07-14
  • Go語言垃圾回收如何處理切片內存?
    Go語言垃圾回收如何處理切片內存?
    Garbage Collection in Go Slices: A Detailed AnalysisIn Go, a slice is a dynamic array that references an underlying array.使用切片時,了解垃圾收集行為至關重要,以避免潛在的內存洩...
    程式設計 發佈於2025-07-14
  • CSS可以根據任何屬性值來定位HTML元素嗎?
    CSS可以根據任何屬性值來定位HTML元素嗎?
    靶向html元素,在CSS 中使用任何屬性值,在CSS中,可以基於特定屬性(如下所示)基於特定屬性的基於特定屬性的emants目標元素: 字體家庭:康斯拉斯(Consolas); } 但是,出現一個常見的問題:元素可以根據任何屬性值而定位嗎?本文探討了此主題。 的目標元素有任何任何屬性值,...
    程式設計 發佈於2025-07-14
  • 如何將MySQL數據庫添加到Visual Studio 2012中的數據源對話框中?
    如何將MySQL數據庫添加到Visual Studio 2012中的數據源對話框中?
    在Visual Studio 2012 儘管已安裝了MySQL Connector v.6.5.4,但無法將MySQL數據庫添加到實體框架的“ DataSource對話框”中。為了解決這一問題,至關重要的是要了解MySQL連接器v.6.5.5及以後的6.6.x版本將提供MySQL的官方Visual...
    程式設計 發佈於2025-07-14
  • 可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    可以在純CS中將多個粘性元素彼此堆疊在一起嗎?
    [2这里: https://webthemez.com/demo/sticky-multi-header-scroll/index.html </main> <section> { display:grid; grid-template-...
    程式設計 發佈於2025-07-14
  • 如何解決AppEngine中“無法猜測文件類型,使用application/octet-stream...”錯誤?
    如何解決AppEngine中“無法猜測文件類型,使用application/octet-stream...”錯誤?
    appEngine靜態文件mime type override ,靜態文件處理程序有時可以覆蓋正確的mime類型,在錯誤消息中導致錯誤消息:“無法猜測mimeType for for file for file for [File]。 application/application/octet...
    程式設計 發佈於2025-07-14
  • CSS強類型語言解析
    CSS強類型語言解析
    您可以通过其强度或弱输入的方式对编程语言进行分类的方式之一。在这里,“键入”意味着是否在编译时已知变量。一个例子是一个场景,将整数(1)添加到包含整数(“ 1”)的字符串: result = 1 "1";包含整数的字符串可能是由带有许多运动部件的复杂逻辑套件无意间生成的。它也可以是故意从单个真理...
    程式設計 發佈於2025-07-14
  • `console.log`顯示修改後對象值異常的原因
    `console.log`顯示修改後對象值異常的原因
    foo = [{id:1},{id:2},{id:3},{id:4},{id:id:5},],]; console.log('foo1',foo,foo.length); foo.splice(2,1); console.log('foo2', foo, foo....
    程式設計 發佈於2025-07-14
  • 如何使用不同數量列的聯合數據庫表?
    如何使用不同數量列的聯合數據庫表?
    合併列數不同的表 當嘗試合併列數不同的數據庫表時,可能會遇到挑戰。一種直接的方法是在列數較少的表中,為缺失的列追加空值。 例如,考慮兩個表,表 A 和表 B,其中表 A 的列數多於表 B。為了合併這些表,同時處理表 B 中缺失的列,請按照以下步驟操作: 確定表 B 中缺失的列,並將它們添加到表的...
    程式設計 發佈於2025-07-14

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3