」工欲善其事,必先利其器。「—孔子《論語.錄靈公》
首頁 > 程式設計 > Python 中的錯誤處理與日誌記錄

Python 中的錯誤處理與日誌記錄

發佈於2024-08-14
瀏覽:111

Writing software is an activity far from perfect. From ideation to production, errors can appear, and in some cases, failure can occur deliberately. This is why understanding error handling and logging in your primary programming language is a critical skill to master.

Errors can happen, and situations can arise, but how you respond—with preparation and information on the error—will get you out of the situation as quickly as possible.

In this article, we will learn about error handling and logging in Python. We will primarily explore exceptions and how to use Python’s logging package to write various types of logs.

If you are interested in more content covering topics like this, subscribe to my newsletter for regular updates on software programming, architecture, and tech-related insights.

Exceptions in Python

As in many other programming languages, Python has the capability to raise exceptions when errors occur. In programming, an exception is an event that occurs during the execution of a program, disrupting the normal flow of instructions.

In Python, exceptions are errors detected during execution. When an exception occurs, Python stops running the code and looks for a special block of code (a try/except block) to handle the error.

Here are some common exceptions that can occur in a Python program:

  • ZeroDivisionError: Occurs when attempting to divide a number by zero.

  • FileNotFoundError: Occurs when trying to open a file that doesn't exist.

  • ValueError: Occurs when trying to convert a string into an integer when the string does not represent a number.

  • IndexError: Occurs when trying to retrieve an element from a list with a non-existing index.

There are many more exceptions, and Python gives you the ability to create your own exceptions if you need custom behavior. This is a feature we will explore later in the article.

To handle Python exceptions, you need to catch them. Catching exceptions requires a simple syntax known as try/except. Let's explore this.

Try/Except

The try/except block is used to handle exceptions. Code that might raise an exception is placed in the try block, and if an exception occurs, the except block is executed. Here is the syntax of try/except in a code block:

try:
    # Code that might raise an exception
    pass
except ExceptionType as e:
    # Code to handle the exception
    pass

The code that could potentially fail is put inside the try block. If an issue arises, the program’s execution will enter the except block.

Here is a flowchart that illustrates how try/except works:

Error Handling and Logging in Python

Let’s see how we can handle a division by zero with this approach:

# Handling division by zero
try:
    result = 10 / 0
except ZeroDivisionError:
    print("Error: Cannot divide by zero.")
# The code will continue its execution

There are also additional blocks in the try/except syntax, such as else and finally:

try:
    # Code that might raise an exception
    pass
except ExceptionType as e:
    # Code to handle the exception
    pass
else:
    # Code to run if no exception is raised
    pass
finally:
    # Code that always runs, regardless of whether an exception was raised or not
    pass

These blocks are optional but serve specific purposes:

  • else Block (Optional): Contains code that runs if no exceptions are raised in the try block. It is useful for code that should only run when the try block is successful.

  • finally Block (Optional): Contains code that always runs, regardless of whether an exception was raised or not. This is typically used for cleanup actions, such as closing files or releasing resources.

Here is an example where we handle the closing of a file in finally in case of an error:

try:
    # Open the file
    file = open('example.txt', 'r')

    # Read from the file
    content = file.read()

    # Print file content (this will only execute if no exceptions are raised)
    print(content)
except FileNotFoundError as e:
    # Handle the specific exception
    print(f"Error: {e}")
except Exception as e:
    # Handle any other exceptions
    print(f"An unexpected error occurred: {e}")
else:
    # Code that runs if no exception was raised in the try block
    print("File read successfully.")
finally:
    # Ensure the file is closed, regardless of whether an exception was raised
    try:
        file.close()
        print("File closed.")
    except:
        # Handle the case where file was never opened (e.g., if open() failed)
        print("File was not opened or already closed.")

Disclaimer: The example above demonstrates file handling using try/except/finally to ensure the file is properly closed even if an error occurs. However, this approach is not ideal for everyday file operations. In practice, it is recommended to use the with statement for file handling in Python. The with statement automatically manages file opening and closing, ensuring that the file is properly closed after its suite finishes, even if an exception occurs.

This is how the try/except works. Now, there might be some confusion with if/else. When should you use try/except, and when should you use if/else?

What’s the difference between try/except and if/else? Use if/else when you want to check conditions that you can predict and handle before they cause errors, and use try/except to catch and manage exceptions that occur during code execution, particularly for errors you can’t easily anticipate.

In the case below, if/else won’t work properly:

filename = 'non_existent_file.txt'

if filename:  # This only checks if filename is not empty, not if the file exists
    # The following line will raise an exception if the file doesn't exist
    content = open(filename, 'r').read()  # This will crash if the file does not exist
    if content:
        print("File content exists:")
        print(content)
    else:
        print("File is empty.")
else:
    print("Filename is invalid.")

Here is a better solution with try/except:

filename = 'non_existent_file.txt'

try:
    content = open(filename, 'r').read()
    if content:
        print("File content exists:")
        print(content)
    else:
        print("File is empty.")
except FileNotFoundError:
    print("Error: File not found.")

In the solution above, the code attempts to open and read a file, checking if its content exists and printing it if present. If the file does not exist, it catches the FileNotFoundError and prints an error message, preventing the program from crashing.

As mentioned earlier in the article, Python allows for custom exceptions. Let’s learn more about it.

Creating Custom Exceptions in Python

In Python, you can define your own exceptions to handle specific error conditions in a more granular way. Custom exceptions are particularly useful in complex applications, such as fintech, where you may need to enforce business rules or handle specific error cases uniquely.

For example, in a fintech application, you might have a scenario where a wallet’s balance is checked against certain criteria. You may want to raise an exception if a wallet’s balance is not sufficient or does not conform to specific rules. Here’s how you can create and use a custom exception for this purpose:

# Define a custom exception
class WalletBalanceError(Exception):
    def __init__(self, message):
        self.message = message
        super().__init__(self.message)

# Function that checks wallet balance
def check_wallet_balance(wallet_balance, required_balance):
    if wallet_balance 



In this example, we define a custom exception WalletBalanceError to handle cases where a wallet’s balance does not meet the required criteria. The check_wallet_balance function raises this exception if the wallet’s balance is insufficient, providing a clear and specific error message.

Custom exceptions in Python help make the code more readable and maintainable by clearly defining specific error conditions and handling them in a structured manner.

Now that we know how to handle errors in Python, it’s time to understand what to do when these errors occur. There are many strategies, but keeping a log of these errors can help identify issues later and correct them. In the next section of this article, we will explore logging.

Logging in Python

Logging helps developers track errors, events, or any runtime information in an application or program. Logging is an important and crucial aspect of software engineering as it has the ability to record everything that goes right or wrong in a post-development application. Logging is one of the most important pillars of monitoring.

Python provides a built-in module that can be used for logging

purposes. To use this module, the first thing to do is to import it.

import logging

Then, configure the logger using the basicConfig method. You need to pass parameters to it, such as the log level, the format of the message, and the output file to save the log.

import logging

# Set up the basic configuration for logging
logging.basicConfig(filename='app.log', level=logging.DEBUG,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Log messages of various severity levels
logging.debug('This is a debug message')
logging.info('This is an info message')
logging.warning('This is a warning message')
logging.error('This is an error message')
logging.critical('This is a critical message')

In the example above, logs will be written to a file called app.log. The log message format includes the timestamp, logger name, log level, and the actual message.

Python logging has different log levels that indicate the severity of an event or message. These log levels allow you to categorize and filter messages based on their importance. Here’s a breakdown of the common log levels in Python:

Log Levels

  1. DEBUG: Detailed information, typically of interest only when diagnosing problems. Used for debugging purposes during development.

  2. INFO: Confirmation that things are working as expected. This is the level you would use for normal operations and informational messages.

  3. WARNING: An indication that something unexpected happened, or indicative of some problem in the near future (e.g., "disk space low"). The software is still working as expected.

  4. ERROR: Due to a more serious problem, the software has not been able to perform some function. An error indicates a significant issue that needs attention.

  5. CRITICAL: A very serious error, indicating that the program itself may be unable to continue running. Critical errors often represent severe problems that require immediate action.

The logging module allows you to control which messages are recorded by setting the logging level. Only messages that are equal to or more severe than the set level will be logged. The default level is WARNING, meaning only WARNING, ERROR, and CRITICAL messages are logged unless you change the logging configuration.

In the code example above, we set the logging level to DEBUG, which means all log messages (DEBUG, INFO, WARNING, ERROR, and CRITICAL) will be recorded in the app.log file.

You can also create custom loggers, which give you more control over how messages are logged. Custom loggers allow you to set up multiple loggers with different configurations, such as different log levels, formats, or output destinations. This is particularly useful in larger applications where you need to separate logs for different modules or components.

Here’s how you can create and use a custom logger:

import logging

# Create a custom logger
logger = logging.getLogger('my_custom_logger')

# Set the log level for the custom logger
logger.setLevel(logging.DEBUG)

# Create a file handler to write logs to a file
file_handler = logging.FileHandler('custom.log')

# Create a console handler to output logs to the console
console_handler = logging.StreamHandler()

# Set log levels for the handlers
file_handler.setLevel(logging.ERROR)
console_handler.setLevel(logging.DEBUG)

# Create a formatter for log messages
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')

# Add the formatter to the handlers
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)

# Add the handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)

# Log messages using the custom logger
logger.debug('This is a debug message')
logger.info('This is an info message')
logger.warning('This is a warning message')
logger.error('This is an error message')
logger.critical('This is a critical message')

In this example, we create a custom logger named my_custom_logger. This logger writes ERROR and more severe messages to a file called custom.log, while DEBUG and more severe messages are output to the console. By customizing the loggers, you can tailor the logging behavior to fit the specific needs of your application.

Real-world Example: Logging in a Web Application

In a web application, logging plays a critical role in monitoring and maintaining the system’s health. For example, in a Flask web application, you might use logging to track incoming requests, errors, and performance metrics.

Here’s a basic example of how you can use logging in a Flask application:

from flask import Flask, request
import logging

app = Flask(__name__)

# Set up the basic configuration for logging
logging.basicConfig(filename='webapp.log', level=logging.INFO,
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

@app.route('/')
def index():
    app.logger.info('Index page accessed')
    return 'Welcome to the Flask Web Application!'

@app.route('/error')
def error():
    app.logger.error('Error page accessed')
    raise ValueError('This is a simulated error')

if __name__ == '__main__':
    app.run(debug=True)

In this Flask application, we configure logging to write logs to a file named webapp.log. Each time the index page is accessed, an informational log message is recorded. If the error page is accessed, an error log message is recorded, and a simulated error is raised.

By implementing logging in your web application, you can gain insights into user activity, system errors, and performance issues. This information is invaluable for debugging, troubleshooting, and optimizing the application.

Conclusion

Error handling and logging are essential aspects of software development, ensuring that applications run smoothly and that any issues are quickly identified and resolved.

In this article, we explored exceptions in Python, including how to handle them using try/except, and the importance of logging for tracking errors and events. We also discussed how to create custom exceptions and custom loggers to suit specific application needs.

By mastering error handling and logging, you’ll be better equipped to build robust and maintainable software that can gracefully handle unexpected situations and provide valuable insights into its operation.

If you enjoyed this article, consider subscribing to my newsletter so you don't miss out on future updates.

Your feedback is valuable! If you have any suggestions, critiques, or questions, please leave a comment below.

版本聲明 本文轉載於:https://dev.to/koladev/error-handling-and-logging-in-python-mi1?1如有侵犯,請聯絡[email protected]刪除
最新教學 更多>
  • 如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    如何修復\“常規錯誤:2006 MySQL Server在插入數據時已經消失\”?
    How to Resolve "General error: 2006 MySQL server has gone away" While Inserting RecordsIntroduction:Inserting data into a MySQL database can...
    程式設計 發佈於2025-05-25
  • Python高效去除文本中HTML標籤方法
    Python高效去除文本中HTML標籤方法
    在Python中剝離HTML標籤,以獲取原始的文本表示Achieving Text-Only Extraction with Python's MLStripperTo streamline the stripping process, the Python standard librar...
    程式設計 發佈於2025-05-25
  • 為什麼PYTZ最初顯示出意外的時區偏移?
    為什麼PYTZ最初顯示出意外的時區偏移?
    與pytz 最初從pytz獲得特定的偏移。例如,亞洲/hong_kong最初顯示一個七個小時37分鐘的偏移: 差異源利用本地化將時區分配給日期,使用了適當的時區名稱和偏移量。但是,直接使用DateTime構造器分配時區不允許進行正確的調整。 example pytz.timezone(&#...
    程式設計 發佈於2025-05-25
  • 如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    如何將多種用戶類型(學生,老師和管理員)重定向到Firebase應用中的各自活動?
    Red: How to Redirect Multiple User Types to Respective ActivitiesUnderstanding the ProblemIn a Firebase-based voting app with three distinct user type...
    程式設計 發佈於2025-05-25
  • CSS強類型語言解析
    CSS強類型語言解析
    您可以通过其强度或弱输入的方式对编程语言进行分类的方式之一。在这里,“键入”意味着是否在编译时已知变量。一个例子是一个场景,将整数(1)添加到包含整数(“ 1”)的字符串: result = 1 "1";包含整数的字符串可能是由带有许多运动部件的复杂逻辑套件无意间生成的。它也可以是故意从单个真理...
    程式設計 發佈於2025-05-25
  • 切換到MySQLi後CodeIgniter連接MySQL數據庫失敗原因
    切換到MySQLi後CodeIgniter連接MySQL數據庫失敗原因
    Unable to Connect to MySQL Database: Troubleshooting Error MessageWhen attempting to switch from the MySQL driver to the MySQLi driver in CodeIgniter,...
    程式設計 發佈於2025-05-25
  • 為什麼使用固定定位時,為什麼具有100%網格板柱的網格超越身體?
    為什麼使用固定定位時,為什麼具有100%網格板柱的網格超越身體?
    網格超過身體,用100%grid-template-columns 為什麼在grid-template-colms中具有100%的顯示器,當位置設置為設置的位置時,grid-template-colly修復了? 問題: 考慮以下CSS和html: class =“ snippet-code”> ...
    程式設計 發佈於2025-05-25
  • PHP未來:適應與創新
    PHP未來:適應與創新
    PHP的未來將通過適應新技術趨勢和引入創新特性來實現:1)適應云計算、容器化和微服務架構,支持Docker和Kubernetes;2)引入JIT編譯器和枚舉類型,提升性能和數據處理效率;3)持續優化性能和推廣最佳實踐。 引言在編程世界中,PHP一直是網頁開發的中流砥柱。作為一個從1994年就開始發展...
    程式設計 發佈於2025-05-25
  • Java數組中元素位置查找技巧
    Java數組中元素位置查找技巧
    在Java數組中檢索元素的位置 利用Java的反射API將數組轉換為列表中,允許您使用indexof方法。 (primitives)(鏈接到Mishax的解決方案) 用於排序陣列的數組此方法此方法返回元素的索引,如果發現了元素的索引,或一個負值,指示應放置元素的插入點。
    程式設計 發佈於2025-05-25
  • 如何將來自三個MySQL表的數據組合到新表中?
    如何將來自三個MySQL表的數據組合到新表中?
    mysql:從三個表和列的新表創建新表 答案:為了實現這一目標,您可以利用一個3-way Join。 選擇p。 *,d.content作為年齡 來自人為p的人 加入d.person_id = p.id上的d的詳細信息 加入T.Id = d.detail_id的分類法 其中t.taxonomy ...
    程式設計 發佈於2025-05-25
  • 編譯器報錯“usr/bin/ld: cannot find -l”解決方法
    編譯器報錯“usr/bin/ld: cannot find -l”解決方法
    錯誤:“ usr/bin/ld:找不到-l “ 此錯誤表明鏈接器在鏈接您的可執行文件時無法找到指定的庫。為了解決此問題,我們將深入研究如何指定庫路徑並將鏈接引導到正確位置的詳細信息。 添加庫搜索路徑的一個可能的原因是,此錯誤是您的makefile中缺少庫搜索路徑。要解決它,您可以在鏈接器命令中添...
    程式設計 發佈於2025-05-25
  • 我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    我可以將加密從McRypt遷移到OpenSSL,並使用OpenSSL遷移MCRYPT加密數據?
    將我的加密庫從mcrypt升級到openssl 問題:是否可以將我的加密庫從McRypt升級到OpenSSL?如果是這樣,如何? 答案:是的,可以將您的Encryption庫從McRypt升級到OpenSSL。 可以使用openssl。 附加說明: [openssl_decrypt()函數要求...
    程式設計 發佈於2025-05-25
  • 如何克服PHP的功能重新定義限制?
    如何克服PHP的功能重新定義限制?
    克服PHP的函數重新定義限制在PHP中,多次定義一個相同名稱的函數是一個no-no。嘗試這樣做,如提供的代碼段所示,將導致可怕的“不能重新列出”錯誤。 但是,PHP工具腰帶中有一個隱藏的寶石:runkit擴展。它使您能夠靈活地重新定義函數。 runkit_function_renction_...
    程式設計 發佈於2025-05-25
  • 如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    如何從PHP中的Unicode字符串中有效地產生對URL友好的sl。
    為有效的slug生成首先,該函數用指定的分隔符替換所有非字母或數字字符。此步驟可確保slug遵守URL慣例。隨後,它採用ICONV函數將文本簡化為us-ascii兼容格式,從而允許更廣泛的字符集合兼容性。 接下來,該函數使用正則表達式刪除了不需要的字符,例如特殊字符和空格。此步驟可確保slug僅包...
    程式設計 發佈於2025-05-25
  • 如何使用Depimal.parse()中的指數表示法中的數字?
    如何使用Depimal.parse()中的指數表示法中的數字?
    在嘗試使用Decimal.parse(“ 1.2345e-02”中的指數符號表示法表示的字符串時,您可能會遇到錯誤。這是因為默認解析方法無法識別指數符號。 成功解析這樣的字符串,您需要明確指定它代表浮點數。您可以使用numbersTyles.Float樣式進行此操作,如下所示:[&& && && ...
    程式設計 發佈於2025-05-25

免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。

Copyright© 2022 湘ICP备2022001581号-3