理解大o符号:算法效率的开发人员指南
作为软件开发人员,无论您是构建Web,移动应用程序还是处理数据处理,掌握大o符号都是必不可少的。 它是评估算法效率,直接影响应用程序性能和可扩展性的关键。 您越了解大o,您就会在代码优化方面越好。
本指南对大o符号,其意义以及如何根据时间和空间复杂性分析算法提供了详尽的解释。我们将介绍编码示例,现实世界应用程序和高级概念,以提供完整的理解。
目录没有大o,您将缺乏代码优化的方向。
对数时间复杂性会在算法将每个迭代的问题大小一半缩小时就会出现。这会导致o(log n)复杂性,这意味着运行时以对数大小的对数增长。
[2 让低= 0; 令高= arr.length -1; 而(低
每次迭代都将搜索空间减半,导致o(log n)。
现实世界情景:在分类的电话簿中查找名称。function getFirstElement(arr) {
return arr[0];
}
o(n)复杂性是指运行时生长与输入大小成正比。 添加一个元素会增加运行时的恒定量。 [2
[2 令max = arr [0]; (让i = 1; i
线性时间:o(n log n)
o(n log n)在有效排序算法(如合并和快速排序)中很常见。 他们将输入分为较小的部分并有效地处理。 [2
function binarySearch(arr, target) {
let low = 0;
let high = arr.length - 1;
while (low
二次时间:o(n²)
带有三个嵌套环的算法通常具有O(N到)复杂性。这在与矩阵(例如矩阵等多维数据结构)一起工作的算法中很常见。
[2
现实世界情景:在图形程序中处理3D对象。
function findMax(arr) {
let max = arr[0];
for (let i = 1; i max) {
max = arr[i];
}
}
return max;
}
最好,最坏和平均情况:大o通常代表最坏的情况。 但是,最佳案例(ω),最差案例(O)和平均案例(θ)复杂性提供了更完整的图片。
为什么很重要?
它有助于优化代码以提高可伸缩性和效率。
最快,最差的是最慢的,平均是预期的性能。
时间vs.空间复杂性?
时间衡量执行时间;空间测量内存用法。如何使用Big O?
免責聲明: 提供的所有資源部分來自互聯網,如果有侵犯您的版權或其他權益,請說明詳細緣由並提供版權或權益證明然後發到郵箱:[email protected] 我們會在第一時間內為您處理。
Copyright© 2022 湘ICP备2022001581号-3