Ziel
Das Ziel dieses Miniprojekts/Tutorials ist es, mit minimalen Komponenten einen supereinfachen HR-Monitor und eine scrollende EKG-Anzeige zu erstellen.
Anforderungen:
Kurzhintergrund
Die Muskeln im Herzen erzeugen elektrische Signale. Einige dieser Signale sind auf der Hautoberfläche erkennbar.
Wir können diese Signale mithilfe von Oberflächenelektroden erfassen. Das Problem ist, dass dies nicht die einzigen elektrischen Signale auf der Haut sind. Glücklicherweise sind die meisten Signale, die wir sehen möchten, auf etwa 1-40 Hz beschränkt.
Verfahren
Wir nehmen unser 1/4-Zoll-Kabel, das als unsere Elektrode dient, und stechen es in der Nähe des Herzens in unsere Haut. Anschließend verwenden wir die USB-Audioschnittstelle, um das analoge Signal zu verstärken und in ein digitales umzuwandeln . Schließlich filtern und zeigen wir in Python an.
Schritte
Schritt 1: Ein 1/4-Zoll-Kabel besteht aus zwei Teilen, der Hülle und der Spitze. Beide Teile müssen Kontakt mit Ihrer Haut haben – halten Sie einfach die Hülle mit der Hand fest und drücken Sie sie gegen die linke Seite Ihrer Brust/oberer Brustkorb (einige Kabel haben möglicherweise mehr Kanäle, stellen Sie einfach sicher, dass sie alle Kontakt haben, um zu starten. Passen Sie die Verstärkung am Audio-Interface an (ich drehe meines ganz nach oben).
Schritt 2: Führen Sie den folgenden Code aus. Stellen Sie sicher, dass die Zeile „input_device_index“ auf Ihr Audio-Interface zeigt. Wir nehmen Teile des eingehenden Audiomaterials, konvertieren es mit fft in den Frequenzbereich, setzen alle unnötigen Frequenzen auf 0 und konvertieren es dann zurück in den Zeitbereich. Als nächstes suchen wir die Spitzen, um die Herzfrequenz zu berechnen, und zeichnen sie dann in einer scrollbaren Form auf.
import numpy as np import pyaudio as pa import struct import matplotlib.pyplot as plt from scipy.signal import decimate, find_peaks CHUNK = 4410 #.1 second FORMAT = pa.paInt16 CHANNELS = 1 RATE = 44100 # in Hz fstep = RATE/CHUNK p = pa.PyAudio() values = [] dsf=44 #down sample factor rds=RATE/dsf #down sampled rate stream = p.open( format = FORMAT, channels = CHANNELS, rate = RATE, input_device_index=3, #adjust based on input input=True, frames_per_buffer=CHUNK ) #set up graph fig,ax = plt.subplots(1) x = np.arange(0,2*CHUNK,2) line, = ax.plot(x, np.random.rand(CHUNK)) ax.set_ylim(-100,100) ax.set_xlim(0,2500) text = ax.text(0.05, 0.95, str(0), transform=ax.transAxes, fontsize=14, verticalalignment='top') fig.show() def getFiltered(x,hp=1,lp=41): #this sets the unneeded freqs to 0 fft=np.fft.fft(x) hptrim=len(fft)/RATE*hp lptrim=len(fft)/RATE*lp fft[int(lptrim):-int(lptrim)]=0 fft[0:int(hptrim)]=0 return np.real(np.fft.ifft(fft)) def getHR(x): pdis = int(0.6 * rds) #minimum distance between peaks. stops rapid triggering. also caps max hr, so adjust peaks, _ = find_peaks(x, distance=pdis, height=0.1) intervals = np.diff(peaks)/rds # in seconds hr = 60 / intervals # in BPM return peaks,round(np.mean(hr),0) #peaks,avg hr while 1: data = stream.read(CHUNK) dataInt = struct.unpack(str(CHUNK) 'h', data) filtered=getFiltered(dataInt) #filter (working with full chunk) dsed=decimate(filtered, 44) #down sample (turns chunk into ds chunk) values=np.concatenate((values,dsed)) #puts the chunks into an array peaks,hr = getHR(values*-1) # gets the peaks and determins avg HR. text.set_text(str(hr)) line.set_xdata(np.arange(len(values))) line.set_ydata(values*-10) #the negative is bc it comes in upside down with my set up. the *10 is just for fun ax.set_xlim(max(0,len(values)-2500),len(values)) #keep the graph scrolling vlines = ax.vlines(peaks,ymin=-100,ymax=100,colors='red', linestyles='dashed') # pop some lines at the peaks fig.canvas.draw() fig.canvas.flush_events() vlines.remove() if len(values)>10000: #keeps the array managably sized, and graph scrolling pretty values=values[5000:] #5 seconds @ ~1000 sr.
Notizen
Halten Sie das Kabel ruhig – möglicherweise müssen Sie nach der Bewegung einige Sekunden warten, um eine genaue Herzfrequenz zu erhalten. Ich habe es mit meiner Garmin-Uhr verglichen und es wurden durchweg ähnliche Werte zurückgegeben.
Ausgabe
Haftungsausschluss
Denken Sie daran, dass Sie Ihren Körper technisch gesehen zu einem Teil des Kreislaufs machen. Das Kabel wird an die Schnittstelle angeschlossen, die mit dem Computer verbunden ist, der
an die Steckdose angeschlossen ist... Versuchen Sie dies auf eigene Gefahr. Ich bin kein Experte – es macht mir einfach Spaß, mit Dingen herumzuspielen, und ich wollte sie teilen.
Nächste Schritte
Diese Methode funktioniert nicht wirklich gut, um alle verschiedenen Teile eines EKG-Signals sauber zu erkennen. Die Elektrode ist stark abgenutzt und ich habe nur minimal gefiltert.
Es eignet sich auch nicht gut für die Erkennung kleinerer Signale wie bei EMG.
Warum
Die Inspiration für dieses Miniprojekt entstand, als ich mit einem EQ-Plug-in in einer DAW herumspielte, während ich ein Gitarrenkabel in der Hand hielt.
Haftungsausschluss: Alle bereitgestellten Ressourcen stammen teilweise aus dem Internet. Wenn eine Verletzung Ihres Urheberrechts oder anderer Rechte und Interessen vorliegt, erläutern Sie bitte die detaillierten Gründe und legen Sie einen Nachweis des Urheberrechts oder Ihrer Rechte und Interessen vor und senden Sie ihn dann an die E-Mail-Adresse: [email protected] Wir werden die Angelegenheit so schnell wie möglich für Sie erledigen.
Copyright© 2022 湘ICP备2022001581号-3